Фокусы и игры
Шрифт:
Итак, вы начинаете с того, что берете всего 1 спичку, а дальнейшими ходами оставляете вашему партнеру 26, 21, 16, 11 и 6 спичек; последняя спичка неизбежно достанется противнику.
8. Здесь разыскать способ беспроигрышной игры несколько труднее, чем при игре в «32». Надо исходить из следующих соображений.
1. Если у вас перед концом партии нечетное число спичек, вы должны оставить противнику 5 спичек, и ваш выигрыш обеспечен. В самом деле: в следующий ход противник оставит вам 4,3,2 или 1 спичку. Если он оставит 4 – вы берете три спички и выигрываете, если 3 –
2. Если же перед концом игры у вас оказывается четное число спичек, то вы должны оставить противнику 6 или 7 спичек. В самом деле, последим, как пойдет дальше игра. Если противник следующим ходом оставляет вам 6 спичек, вы берете одну и, обладая теперь уже нечетным числом спичек, спокойно оставляете противнику 5 спичек, с которыми он должен неизбежно проиграть. Если он оставит вам не 6, а 5 спичек, берете 4 и выигрываете. Если оставит 4 – берете все четыре и выигрываете. Если оставит 3 – берете две и выигрываете. И наконец, если оставит 2 – вы тоже выигрываете. Меньше двух он оставить не может.
Теперь уже не трудно найти способ беспроигрышной игры. Он состоит в том, чтобы, имея нечетное число спичек, оставлять противнику на столе такое, которое на 1 меньше кратного 6-ти, т. е. 5,11,17, 23; имея же четное число спичек, оставлять противнику на столе число спичек, кратное 6-ти или на 1 больше, т. е. 6 или 7, 12 или 13, 18 или 19, 24 или 25. Нуль можно считать четным числом; поэтому, начиная игру, вы должны взять из 27 спичек 2 или 3, а в дальнейшем следовать описанной схеме. Ведя так игру, вы неизбежно выиграете. Не давайте только противнику перехватить у вас инициативу.
9. Если условие игры обратное и выигравшим считается обладатель нечетного числа, вы должны поступать при игре следующим образом: имея четное число спичек, оставляйте противнику на 1 меньше, чем кратное 6-ти, имея же нечетное число, оставляйте ему кратное 6-ти или на 1 больше. Такая тактика обязательно приведет вас к выигрышу. Начиная игру, вы имеете 0 спичек (т. е. как бы четное число), поэтому первым ходом берете 4 спички, оставляя противнику 23.
10. Вы, вероятно, пытались составить шесть треугольников, располагая спички в одной плоскости. И, конечно, безуспешно, потому что так задачу решить невозможно. Но ведь такого ограничения в задаче нет: вы можете располагать треугольники и не в одной плоскости, т. е. размещать их в пространстве. И тогда она решается очень просто – нужно лишь построить из 6 спичек пирамиду с треугольным основанием и треугольными боками (рис. 8). У вас получится 4 равносторонних треугольника из 6 спичек.
Рис. 8. Четыре равносторонних треугольника из шести спичек (треугольники – грани пирамиды)
Головоломные размещения и занимательные перестановки
1. Белки и кролики
Перед вами восемь пронумерованных пней (рис. 1). На пнях 1 и 3 сидят кролики, на пнях 6 и 8 – белки. И белки, и кролики почему-то недовольны своими местами и хотят обменяться пнями: белки желают сидеть на местах кроликов, а кролики – на местах белок. Попасть на новое место они могут, прыгая с пня на пень по следующим правилам:
1) прыгать с пня на пень можно только по тем линиям, которые показаны на рисунке; каждый зверек может делать несколько прыжков кряду;
Рис. 1. На полянке
2) два зверька на одном пне поместиться не могут, поэтому прыгать можно только на свободный пень.
Имейте также в виду, что зверьки желают обменяться местами за наименьшее число прыжков. Впрочем, меньше чем 16 прыжками им не обойтись.
Как же они это сделают?
2. Чайный сервиз
Мне пришлось как-то целый вечер ждать поезд на маленькой станции. Не было ни книг, ни газет, ни собеседников, и я не знал, чем наполнить часы ожидания. К счастью, я вспомнил об одной занимательной задаче, которая незадолго до того попалась мне в иностранном журнале. Задача состояла в следующем.
Стол разграфлен на 6 квадратов, в каждом из которых, кроме одного, помещается какой-нибудь предмет. Я воспользовался чайной посудой и разместил по квадратам чашки, чайник и молочник, как показано на рис. 2.
Суть задачи в том, чтобы поменять местами чайник и молочник, передвигая предметы из одного квадрата в другой по определенным правилам, а именно:
1) предмет перемещать только в тот квадрат, который окажется свободным;
2) нельзя передвигать предметы по диагонали квадрата;
3) нельзя переносить один предмет поверх другого;
4) нельзя также помещать в квадрат более одного предмета, даже временно.
Эта задача имеет много решений, но интересно найти самое короткое, т. е. обменять местами чайник и молочник за наименьшее число ходов.
Рис. 2. Стол, накрытый к чаю
В поисках решения незаметно прошел вечер; я покидал станцию, так и не найдя кратчайшего решения.
Может быть, читатели найдут его? На всякий случай предупреждаю, что искомое наименьшее число ходов все же больше дюжины, хотя и меньше полутора дюжин.
Рис. 3. В гараже
3. Автомобильный гараж
На нашем чертеже изображен план автомобильного гаража с помещениями для двенадцати автомобилей. Но помещение так неудобно, так мало, что у заведующего гаражом постоянно возникают затруднения. Вот одно из них. Предположим, что восемь автомобилей стоят так, как показано на рис. 3. Автомобили 1, 2, 3 и 4 необходимо поменять местами с автомобилями 5, 6, 7 и 8.