Фундаментальная теория шахмат
Шрифт:
Из всех наших примеров мы видим, что белый ферзь чем ближе к коню, к цели по времени, тем сильнее для коня угроза его захвата. Таким образом сила нападения на фигуру противника обратно пропорциональна реальному времени до нее.
Теперь формулу силы оп. лин. нападения записываем так:
и формулируем ее следующим образом: сила оп давления на фигуру противника прямо пропорциональна ее массе и обратно пропорциональна реальному времени до нее.
mц – массу фигуры противника,
tн – реальное
Поскольку при непосредственном оп. ударе по цели время до нее принимает нулевое значение, значит, в знаменателе формулы мы должны ввести так называемый исходный темп. Также на рассмотренных нами примерах мы видим, что нападение на каждый подступ данного оп направления по оп. линии может длится в течении различного по продолжительности времени, измеряемого в оп. лин. темпах. Сам же захват подступов происходит только во время оп. ходовых темпов с помощью оп. удара с преодолением определенной дистанции. Таким образом силу обороны цели можно определять только по глубине оп направления ударной фигуры, измеряемой в оп ходовых темпах.
Формула глубины обороны цели:
Итак, коротко формулируем: сила обороны цели пропорциональна глубине оп. напр. ударной фигуры.
Уточним характер воздействия на фигуру противника во время оп. лин. ударов. При нападении ударной фигуры на ее оп. напр. оборонительной линии противника наносится сначала предварительно лин. удары с места, во время которых увеличивается оперативное давление, которое, как мы считаем, развязывают последовательно лин. оборонительные узлы, являются подготовительными и предваряют до полной готовности завершающий оп. удар сходу, развязывающий последний оп. узел оборонительный (об.) подступа. Таким образом последовательное преодоление об подступов представляет собой полное преодоление об линии противника и на всю глубину оп направления.
Рис. 10
На рис 10 черный конь на поле b2 на выбранном оп направлении обороны ладьи T(Кb2-d3-f4-Лg6)=3T(5T;3R) намечает нападение последующей оп. линии
t(…Кbч2-dч3–2Кбd3-Кчd3-f4–3Кбf4-К:Лg6)=5T(3T;3R). Действуя по этой оп. линии, конь намерен, увеличивая оп давление на ладью противника, ослаблять ее оборону, что мы и последовательно разберем.
Сила нападения коня и обороны ладьи, следующие:
Записываем намеченные действия после вступительного хода так:
…Кb2- d3 (рис.11). Этот оперативный маневр коня обозначаем сплошной стрелкой с полным наконечником. Теперь глубина оп напр коня: T(Кd3-f4-Лg6) = 2T(4t ;2R) , а оп. линии: t(2Кdб3-Кd3-fч4–3Кf4-К:Лg6)=4t(2T;2R), где глубина дистанции стала R=2R, Сила нападения коня
Рис. 11. 1… Кb2-d3
После вступительного хода конь выходит с дальнего подступа на ближний, преодолев сходу первый оборонительный подступ ладьи и захватывает поле d3. Во время хода белых 2…конь наносит лин. удар с места развязывая линейный оборонительный узел, а у него оп линия такая:
t(2Кdб3-Кd3-fч4–3Кf4-К:Лg6)=3t(2T ;2R).
Сила оп. давления возрастает до
Рис. 12. 2… Кd3-f4
На рис 12 показан путь, пройденный конем после хода 2… Кd3-fч4 и преодолением второго об подступа и выходом с ближнего подступа на прямой обороны ладьи.
T(Кf4-Лg6)=1T(2t ;1R) с намерением продолжить оперативную линию так
t(3Кfб4-К:Лчg6)=2t(1T ;1R). Сила нападения коня становится
После хода белых 3… и линейного удара коня с места оп давление для ладьи становится критическим по оп. лин. t(3…К:Лg6)=1T(1t ;1R) на оп напр T(Кf4-Лg6)=1T(1t ;1R) , а сила нападения прямой угрозой захвата
Рис. 13. 3…. Кf4 : g6
На рис 13 показан завершающий оп. удар сходу
после хода 3… К:Лg6 с развязкой об узла на последнем оп темпе, преодолением последнего об подступа по оп. лин. ладьи g6.Захват ладьи приводит черного коня к намеченному результату
Fнк=mк / 0t+1.t : Fлоб=0T
Введем тактико-техническую характеристику массы для каждой фигуры с их обозначениями. За единицу массы принимаем массу поля, потому что при захвате, которого также требуются силы и средства и обозначаем ее mпо (читается «по»).
Итак,
Максимально полная сила нападения достигается при поражении короля противника, а также единим зарядом, так как при этом противник признает поражение всей массы своих фигур. Таким образом король обладает не только тактической массой, но и стратегической, которая подсчитывается нами следующим образом: