Чтение онлайн

на главную - закладки

Жанры

Фундаментальные алгоритмы и структуры данных в Delphi

Бакнелл Джулиан М.

Шрифт:

Автоматическое выравнивание переменных иногда может ввести программиста в заблуждение. Если, например, объявлен следующий тип record в 32-разрядной версии Delphi, каким будет результат выполнения операции sizeof(TMyRecord)?

type

TMyRecord = record

aByte : byte;

aLong : longint;

end;

Многие без сомнения ответят, что, дескать, 5 байт (и это было бы правильно для Delphi1). Однако верным ответом будет 8 байт. Компилятор автоматически вставит три байта между полем aByte и along, просто чтобы выровнять

последнее поле по границе 4 байт.

Если тип record объявить следующим образом:

type

TMyRecord = packed record

aByte : byte;

aLong : longint;

end;

то функция sizeof(TMyRecord) даст результат 5. Однако в этом случае доступ к полю aLong потребует больше времени, чем в предыдущем примере, поскольку значение поля будет переходить через границу 4 байт. Следовательно, правило можно сформулировать так: если используется ключевое слово packed, поля в записи должны располагаться таким образом, чтобы данные были выровнены по границе 4 байт. Сначала объявите 4-байтные поля, а затем уже все остальные. Это правило применяется во всех кодах, приведенных в настоящей книге. И еще одно, никогда не угадывайте размер записи, а пользуйтесь для этого функцией sizeof.

Кстати, следует знать, что диспетчер динамического распределения памяти Delphi также помогает выполнять выравнивание данных. Он выравнивает не только 4-байтные значения по границе 4 байт, но и 8-байтные значения по границе 8 байт. Это имеет большое значение для переменных типа double: операции с числами с плавающей запятой выполняются быстрее, если переменные типа double выровнены по границе 8 байт. Если задачи по программированию связаны с использованием большого количества числовых переменных, убедитесь, что поля типа double в записях выровнены по границе 8 байт.

Пространство или время

Чем больше мы изучаем, разрабатываем и анализируем алгоритмы, тем чаще мы сталкиваемся с одним универсальным законом вычислительной техники: быстрые алгоритмы, как правило, требуют больше памяти. Таким образом, для использования быстрого алгоритма необходимо располагать большим объемом памяти.

Рассмотрим это на простом примере. Предположим, что требуется разработать алгоритм, который бы определял количество установленных бит в байте. Первый вариант алгоритма показан в листинге 1.3.

Листинг 1.3. Первоначальная функция определения количества установленных битов в байте

function CountBitsl(B : byte):byte;

begin

Result := 0;

while (B <> 0) do

begin

if Odd(B) then

inc(Result);

B := B shr 1;

end;

end;

Как видите, в этой функции не используются промежуточные переменные. Она просто считает установленные биты путем деления значения на 2 (сдвиг целого значения на один бит вправо эквивалентно делению на 2) и определения количества полученных нечетных результатов. Цикл завершается, когда будет получено значение 0, поскольку в этом случае очевидно, что установленных битов больше нет. Значение О большого для приведенного алгоритма зависит от количества установленных битов в параметре, и в худшем случае внутренний цикл будет

выполнен восемь раз. Таким образом, это алгоритм класса O(n).

Описанный алгоритм вполне очевиден и, если не принимать во внимание возможность его реализации на языке ассемблера, улучшить его практически невозможно.

Тем не менее, давайте рассмотрим назначение алгоритма с другой точки зрения. В качестве входного значения функция принимает 1-байтный параметр, с помощью которого можно передать всего 256 значений. В таком случае, почему бы нам заранее не вычислить все возможные ответы и не записать их в статический массив? Реализация нового алгоритма приведена в листинге 1.4.

Листинг 1.4. Улучшенная функция определения количества установленных битов в байте const

BitCounts : array [0..255] of byte =

(0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,

1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,

1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,

2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,

1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,

2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,

2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,

3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,

1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,

2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,

2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,

3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,

2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,

3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,

3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,

4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8);

function CountBits2(B : byte): byte;

begin

Result := BitCounts[B];

end;

Здесь за счет статического 256-байтного массива значений функция намного упростилась. Более того, приведенный алгоритм не содержит цикла. Независимо от значения входного параметра, количество установленных битов вычисляется за один простой шаг. (Обратите внимание, что значения для статического массива были вычислены автоматически с помощью простой программы, использующей первую функцию.)

На компьютере автора книги последний алгоритм оказался в 10 раз быстрее, чем первый: 10 вызовов второй функции занимает столько же времени, сколько один вызов первой. (Обратите внимание, что здесь речь идет о среднем случае. В лучшем случае для первой функции значение параметра равно 0 и функция практически не будет требовать времени на выполнение.)

Таким образом, за счет введения 256-байтного массива мы разработали алгоритм, который быстрее в 10 раз. Увеличение скорости было достигнуто за счет увеличения требуемого объема памяти: можно получить быструю функцию, использующую большой статический массив (который будет скомпилирован в выполняемый файл, об этом также следует помнить), или более медленную функцию, не требующую больших объемов памяти. (Существует еще одна альтернатива. Можно заполнять массив значениями в процессе выполнения функции, при ее первом вызове. В этом случае массив не будет компилироваться в выполняемый файл, но первый вызов функции займет достаточно длительное время.)

Поделиться:
Популярные книги

Перестройка миров. Тетралогия

Греков Сергей
Перестройка миров
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Перестройка миров. Тетралогия

Пятничная я. Умереть, чтобы жить

Это Хорошо
Фантастика:
детективная фантастика
6.25
рейтинг книги
Пятничная я. Умереть, чтобы жить

Внешники

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

Релокант 9

Flow Ascold
9. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант 9

Аристократ из прошлого тысячелетия

Еслер Андрей
3. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Аристократ из прошлого тысячелетия

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Я тебя не предавал

Бигси Анна
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я тебя не предавал

Земная жена на экспорт

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Земная жена на экспорт

Лорд Системы 7

Токсик Саша
7. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 7

Идеальный мир для Лекаря 2

Сапфир Олег
2. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 2