Чтение онлайн

на главную

Жанры

Геном человека. Энциклопедия, написанная четырьмя буквами
Шрифт:

На самом деле вообразить молекулу, которая создает собственные копии, вовсе не так трудно, как это кажется сначала, да и возникнуть она должна всего один раз. Представьте себе репликатор как форму для отливки или матрицу; как большую молекулу, состоящую из сложной цепи разного рода более мелких молекул, играющих роль строительных блоков. Эти блоки в изобилии содержались в бульоне, окружавшем репликатор. Допустим теперь, что каждый строительный блок обладал сродством к другим блокам одного с ним рода. В таком случае всякий раз, когда какой-нибудь строительный блок, находившийся в бульоне, оказывался подле той части репликатора, к которому у него было сродство, он там и оставался. Прикрепляющиеся таким образом строительные блоки автоматически располагались в той же последовательности, что и блоки репликатора. Поэтому легко представить себе, что они соединялись друг с другом, образуя стабильную цепь, подобно

тому, как это происходило при образовании самого репликатора. Этот процесс может продолжаться в форме постепенного наложения одного слоя на другой. Именно так образуются кристаллы. Но две цепи могут также и разойтись, и в таком случае получатся два репликатора, каждый из которых будет продолжать создавать дальнейшие копии.

Следующее важное звено в наших рассуждениях, на которое делал упор сам Дарвин (хотя он имел в виду растения и животных), это конкуренция. Первичный бульон не мог обеспечить существование бесконечного числа молекул-репликаторов. Не говоря уже о конечных размерах Земли, важную роль должны были играть другие лимитирующие факторы. Описывая репликатор как матрицу или форму для отливки, мы предполагали, что он был погружен в бульон, богатый мелкими строительными блоками, т. е. молекулами, необходимыми для создания копий. Но с возрастанием численности репликаторов эти блоки стали использоваться с такой скоростью, что очень быстро оказались дефицитным и дорогостоящим ресурсом. Репликаторы разных типов или штаммов конкурировали за них.

Для простоты я представляю дело так, будто нынешние гены в общем почти то же самое, что и первые репликаторы, возникшие в первобытном бульоне. На самом деле это может оказаться неверным, хотя в данном случае оно неважно. Исходными репликаторами могли быть молекулы, родственные ДНК, или же молекулы совершенно иного типа. Во втором случае мы могли бы допустить, что на какой-то более поздней стадии ДНК захватила их машины выживания. Если это так, то исходные репликаторы, очевидно, были полностью уничтожены. поскольку в современных машинах выживания никаких следов от них не сохранилось. Продолжая развивать это направление, А. Кэрнз-Смит (A. G. Cairns-Smith) высказал занятное предположение, что наши предки — первые репликаторы — были, возможно, не органическими молекулами, а неорганическими кристаллами-минералами, кусочками глины. ДНК, была ли она узурпатором или нет, сегодня, несомненно, находится у власти, если только, как я предположительно заметил в гл. 11, в настоящее время не начинается новый захват власти.

Первое, что нам следует усвоить относительно современного репликатора, — это то, что он очень общителен. Машина выживания содержит не один, а многие тысячи генов. Построение организма — мероприятие кооперативное, причем внутренние связи в нем так сложны и запутанны, что отделить вклад одного гена от вклада другого почти невозможно (1). Данный ген может оказывать самые разнообразные воздействия на совершенно разные части тела. Данная часть тела может находиться под влиянием многих генов, и эффект каждого отдельного гена зависит от его взаимодействия со многими другими генами. Некоторые гены выступают в роли главных генов, контролирующих действие кластера других генов. Вновь воспользовавшись нашей аналогией, можно сказать, что каждый данный лист чертежей имеет отношение ко многим разным частям здания; и каждый лист приобретает смысл лишь при условии перекрестных ссылок на многие другие листы.

Эта сложная взаимозависимость генов может вызвать резонный вопрос: а надо ли вообще пользоваться словом «ген»? Почему не прибегнуть к какому-нибудь собирательному названию вроде «генного комплекса»? Во многих случаях это действительно было бы удачным решением. Но если подойти к проблеме с другой стороны, то представляется также разумным рассматривать генный комплекс как совокупность дискретных репликаторов или генов. Такой подход связан с явлением пола. При половом размножении гены смешиваются и перетасовываются. Это означает, что каждое отдельное тело представляет собой лишь временное транспортное средство для короткоживущей комбинации генов. Данная комбинация генов, т. е. каждый отдельный индивидуум, может быть короткоживущим, но сами гены потенциально являются долгоживущими. В ряду поколений их пути постоянно пересекаются и расходятся. Отдельный ген можно рассматривать как единицу, продолжающую существовать в ряду многочисленных последовательных индивидуальных тел. Это центральное положение, развиваемое в настоящей главе, и именно с ним некоторые из моих самых уважаемых коллег упрямо отказываются соглашаться, так что читатели должны простить мне, если им покажется, что я разрабатываю его слишком тщательно. Прежде всего я должен вкратце изложить основы явления пола.

Если принять за презумптивную генетическую единицу целую хромосому, то ее жизненный цикл продолжается в течение всего лишь одного поколения. Допустим, что это ваша хромосома 8а, полученная вами от отца. Она образовалась в одном из семенников незадолго до того, как вы были зачаты. Она не существовала никогда прежде за всю мировую историю. Она была создана в процессе перемешивания, происходящего при мейозе, постепенно образуясь из объединяющихся друг с другом участков хромосом от ваших бабки и деда с отцовской стороны. Она попала в один сперматозоид, который стал единственным в своем роде. Этот сперматозоид был одним из нескольких миллионов, образующих мощную армаду малюсеньких сосудов, которые все вместе вплыли в организм вашей матери. Этот сперматозоид — один-единственный (если только вы не один из неидентичных близнецов) из всей флотилии, который проник в одну из яйцеклеток вашей матери и дал вам жизнь. Рассматриваемая нами генетическая единица, ваша хромосома 8а, реплицируется вместе со всем остальным вашим генетическим материалом. Теперь она существует в дуплицированном виде во всех клетках вашего тела. Но когда вы в свою очередь соберетесь стать отцом (или матерью), эта хромосома будет разрушена в процессе образования в вашем организме сперматозоидов (или яйцеклеток). Между этой хромосомой и вашей материнской хромосомой 8б произойдет обмен участками. В каждой половой клетке будет создана новая хромосома 8; она может оказаться «лучше» старой или «хуже», но, если исключить возможность довольно маловероятного совпадения, она будет определенно иной, определенно единственной в своем роде. Продолжительность жизни одной хромосомы — одно поколение.

А какова продолжительность жизни более мелкой генетической единицы, составляющей, например, 1/100 длины хромосомы 8а? Эту единицу вы также получили от своего отца, но весьма вероятно, что ее сборка происходила не в его организме. В соответствии с нашими прежними рассуждениями он с вероятностью 99 % получил ее в интактном состоянии от одного из двух своих родителей. Допустим, это была его мать, т. е. ваша бабушка со стороны отца. Опять-таки эта бабушка с вероятностью 99 % получила эту хромосому в интактном виде от одного из своих родителей. В конечном счете, проследив родословную маленькой генетической единицы на достаточном числе поколений, мы дойдем до ее первоначального создателя. На какой-то стадии она, вероятно, была создана впервые в некоем семеннике или яичнике одного из ваших предков.

Под словом «ген» я имею в виду генетическую единицу, которая достаточно мала, чтобы сохраняться на протяжении многих поколений и распространяться вокруг в большом числе копий. Это не жесткое определение типа «все или ничего», но определение несколько расплывчатое, подобное таким определениям, как «большой» или «старый». Чем больше вероятность того, что данный участок хромосомы будет разорван при кроссинговере или изменится в результате разного рода мутаций, тем меньше он заслуживает названия гена в том смысле, который я вкладываю в этот термин. По-видимому, под это определение подпадает цистрон, но это могут быть и крупные единицы. Десяток цистронов может располагаться в хромосоме в такой тесной близости, что для наших целей их можно считать одной долгоживущей генетической единицей. Хорошим примером служит кластер, определяющий мимикрию у бабочек.

Когда цистроны покидают одно тело и входят в следующее, используя сперматозоид или яйцеклетку для путешествия в следующее поколение, они, вероятно, могут обнаружить на своем маленьком кораблике своих ближайших соседей по предыдущему путешествию — старых товарищей, вместе с которыми они совершили долгое путешествие, начавшееся в телах очень далеких предков. Соседние цистроны, лежащие в той же хромосоме, образуют тесно сцепленную группу попутчиков, которым лишь в редких случаях не удается «взойти на борт» того же «судна», когда наступает время мейоза.

Строго говоря, эту книгу следовало бы назвать не «Эгоистичный цистрон» и не «Эгоистичная хромосома», а «Немножко эгоистичный большой кусочек хромосомы и даже еще более эгоистичный маленький кусочек хромосомы». Такое название, мягко говоря, малопривлекательно, а поэтому, определив ген как небольшой кусочек хромосомы, потенциально сохраняющийся на протяжении многих поколений, я выбрал название «Эгоистичный ген».

Индивидуумы не вечны, они преходящи. Хромосомы также уходят в небытие, подобно пачке карт, полученных каждым из игроков и отыгранных вскоре после сдачи. Но с самими картами при тасовке ничего не происходит. Карты — это гены. Гены не разрушаются при кроссинговере, они просто меняют партнеров и продолжают двигаться дальше. Конечно, они движутся дальше. Это их работа. Они — репликаторы, а мы — машины, необходимые им для того, чтобы выжить. После того, как мы выполнили свою задачу, нас выбрасывают.

Поделиться:
Популярные книги

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Эфемер

Прокофьев Роман Юрьевич
7. Стеллар
Фантастика:
боевая фантастика
рпг
7.23
рейтинг книги
Эфемер

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Последний попаданец 2

Зубов Константин
2. Последний попаданец
Фантастика:
юмористическая фантастика
попаданцы
рпг
7.50
рейтинг книги
Последний попаданец 2

Последняя жена Синей Бороды

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Последняя жена Синей Бороды

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Мастер...

Чащин Валерий
1. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
6.50
рейтинг книги
Мастер...

Лорд Системы 8

Токсик Саша
8. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 8

Титан империи 2

Артемов Александр Александрович
2. Титан Империи
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Титан империи 2

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4