Гигабайты власти
Шрифт:
Смарт-карты в своих потенциальных возможностях имеют целый ряд очень важных преимуществ в сравнении с другими технологиями. Обладая собственным процессором и памятью, они могут участвовать в криптографических протоколах обмена информацией, и, в отличие от карточек с магнитной полоской, здесь хранимые данные можно защищать от неавторизованного доступа. Серьезная проблема лишь в том, что реальная стойкость этой защиты очень часто переоценивается. Далее будет представлен краткий обзор наиболее важных технологий, используемых при вскрытии смарт-карт. Эта информация важна для любого человека, желающего получить реальное представление о том, как происходит вскрытие защищенных устройств и каких затрат это стоит.
Классификация
Технологии микрозондирования, с помощью микроскопа и иглы микропробника позволяющие получить доступ непосредственно к поверхности чипа, где атакующий может регистрировать прохождение битов информации, манипулировать ими и вмешиваться в работу интегральной схемы.
Программные атаки, использующие обычный коммуникационный интерфейс процессора смарт-карты и эксплуатирующие уязвимости защиты, выявленные в протоколах, криптографических алгоритмах и других особенностях конкретной реализации схемы. Чем более зрелой является технология защиты, тем чаще приходится сочетать этот метод с двумя следующими методами атак.
Анализ побочных каналов утечки информации, когда атакующий с высокой по времени частотой снимает аналоговые характеристики колебаний в питании и интерфейсных соединениях, а также любые другие электромагнитные излучения, порождаемые элементами схемы процессора (транзисторами, триггерами и т. д.) в ходе обычной работы.
Технологии индуцирования сбоев, где, напротив, используют нештатные условия эксплуатации, чтобы вызвать ошибки в работе процессора и открыть таким образом дополнительные каналы доступа к защищенной информации.
Все технологии микрозондирования по сути своей являются разрушающими атаками. Это значит, что для их реализации требуются многие часы, иногда недели работы в условиях специализированной лаборатории, а сам исследуемый чип при этом разрушается. Остальные три категории относятся к неразрушающим атакам. Иначе говоря, после того, как злоумышленник подготовил такую атаку в отношении конкретного типа процессора и уже известной версии программного обеспечения, он может с легкостью воспроизвести ее в течение минут или даже нескольких секунд в отношении любой другой карты того же типа. При этом атакуемая карта физически не повреждается, а оборудование, использованное для атаки, обычно можно замаскировать под обычный ридер, т. е. считыватель смарт-карт.
Очевидно, что неразрушающие атаки особо опасны, поскольку не оставляют за собой следов компрометации. Но понятно и то, что сама природа атак такого рода подразумевает детальное знание как процессора, так и программного обеспечения конкретной карты. С другой стороны, для разрушающих атак микрозондированием требуется очень мало исходных знаний о конкретной конструкции, поэтому при относительно небольшом наборе приемов они обычно срабатывают в отношении весьма широкого ряда разных чипов. Таким образом, можно говорить, что атака на новую смарт-карту обычно начинается с разрушающей обратной инженерной разработки, результаты которой помогают создать более дешевые и быстрые неразрушающие атаки. В частности, именно такая последовательность событий многократно отмечена при вскрытии карт условного доступа в системах платного телевидения [КК99].
Итак, к этому типу атак принято относить такие способы компрометации смарт-карт, которые сопровождаются вскрытием корпуса устройства. Публичное представление таких методов, применяемых в кракерском подполье, впервые, похоже, было сделано в 1996 году исследователями из Кембриджского университета Россом Андерсоном и Маркусом Куном в ходе Второго семинара USENIX по электронной коммерции. Еще более подробно эти технологии описаны в совместной статье Куна и Оливера Кеммерлинга 1999 года «Принципы конструирования защищенных процессоров смарт-карт», а также в последующей докторской диссертации Куна, которая, правда, в отличие от первых двух статей в Интернете не опубликована. В самом кратком изложении суть этих работ примерно такова [АК96][КК99].
Типичный чиповый модуль смарт-карты имеет тонкое пластиковое основание размером около квадратного
Следующим этапом, если процессор совершенно новый и неизвестный, становится создание карты его схем. Сейчас для этого обычно применяют оптический микроскоп и цифровую камеру, с помощью которых делают большую, размером несколько метров, мозаику из высокого разрешения снимков поверхности чипа. У большинства чипов имеется защитный поверхностный слой (пассивация) из оксида или нитрата кремния, который предохраняет их от излучений оборудования и диффузии ионов. Азотная кислота на него не действует, поэтому для его удаления специалисты используют сложный метод сухого травления. Но это не единственная возможность для доступа к поверхности. Другим методом, особенно когда схема в целом известна, является использование игл-микропробников, которые с помощью ультразвуковой вибрации удаляют защитный слой непосредственно под точкой контакта. Кроме того, для локального удаления защитного слоя применяются лазерные резаки-микроскопы, используемые в лабораториях клеточной биологии.
Описанная техника вскрытия успешно применяется любителями-кракерами. Далее же вкратце будут описаны некоторые технологии, доступные хорошо оснащенным лабораториям, занимающимся изучением полупроводников. В мире сейчас насчитываются сотни таких лабораторий – в университетах и промышленных исследовательских центрах, к примеру. Имеется достоверная информация, что наиболее продвинутые кракеры арендуют эту технику и тщательно изучают новейшие промышленные технологии обратной инженерной разработки (подробнее об этом в следующем разделе «Возня в подполье, война на небесах»).
В начале 1990-х годов в Кавендишской лаборатории Кембриджа создана технология обратного восстановления схемы сложных кремниевых чипов, позволяющая аккуратно снимать слои микросхемы один за другим. Одно из примененных там новшеств – техника показа примесных N и Р слоев на основе эффекта Шоттки: тонкая пленка из золота или палладия накладывается на чип, образуя диод, который может быть виден в электронном луче. Изображения последовательных слоев чипа вводятся в компьютер, специальное программное обеспечение очищает первоначально нечеткие образы, выдает их ясное представление и распознает стандартные элементы чипа. Данная система была протестирована на процессоре Intel 80386 и ряде других устройств. Работа над восстановлением 80386 заняла две недели, причем для правильной реконструкции обычно требуется около шести образцов чипа. Результатом работ могут быть диаграммы масок и схем или даже список библиотечных ячеек, из которых чип был сконструирован.