Чтение онлайн

на главную

Жанры

Шрифт:

КРАБ: Мои пластинки восходят к каким-то математическим выкладкам? Как интересно! Что ж, теперь, когда вы задели мое любопытство, я просто обязан об этом узнать.

АХИЛЛ: Отлично. (Делает паузу, чтобы отхлебнуть чай, затем продолжает.) Кто-нибудь из вас слышал о печально известной “Последней Теореме” Ферма?

МУРАВЬЕД: Не уверен… Звучит знакомо, но не могу припомнить.

АХИЛЛ: Идея очень проста. Пьер де Ферма, адвокат по профессии и математик по призванию, однажды, читая классический текст Диофанта “Арифметика”, наткнулся на следующее уравнение:

a2 + b2 = c2

Он

тут же понял, что это уравнение имеет бесконечно много решений для a, b, и c, и написал на полях свою знаменитую поправку:

Уравнение

an + bn = cn

имеет решение в положительных целых числах a, b, c и n только при n = 2 (и в таком случае имеется бесконечное множество a, b и c, удовлетворяющих этому уравнению); но для n > 2 решений не существует. Я нашел замечательное доказательство этого, которое, к несчастью, не помещается на полях.

С того дня и в течение почти трехсот лет математики безуспешно пытаются сделать одно из двух: либо доказать утверждение Ферма и таким образом очистить его репутацию, в последнее время слегка подпорченную скептиками, не верящими, что он действительно нашел доказательство — либо опровергнуть его утверждение, найдя контрпример: множество четырех целых чисел a, b, c и n, где n > 2, которое удовлетворяло бы этому уравнению. До недавнего времени все попытки в любом из этих двух направлений проваливались. Точнее, теорема доказана лишь для определенных значений n — в частности, для всех n до 125 000.

АХИЛЛ: Не лучше ли тогда называть это Гипотезой вместо Теоремы, поскольку настоящее доказательство еще не найдено?

АХИЛЛ: Строго говоря, вы правы, но по традиции это зовется именно так.

КРАБ: Удалось ли кому-нибудь в конце концов разрешить этот знаменитый вопрос?

АХИЛЛ: Представьте себе, да: это сделала г-жа Черепаха, как всегда, в момент гениального озарения. Она не только нашла ДОКАЗАТЕЛЬСТВО Последней Теоремы Ферма (оправдав, таким образом, ее название и очистив репутацию Ферма), но и КОНТРПРИМЕР, показав, что интуиция скептиков их не подвела!

КРАБ: Вот это да! Поистине революционное открытие.

МУРАВЬЕД: Прошу вас, не тяните: что это за магические числа, удовлетворяющие уравнению Ферма? Мне особенно любопытно узнать значение n.

АХИЛЛ: Ах, какой ужас! Какой стыд! Верите ли, я оставил все выкладки дома на громаднейшем листе бумаги. К несчастью, он был слишком велик, чтобы принести его с собой. Хотел бы я, чтобы он был сейчас здесь и чтобы можно было вам все показать. Но кое-что я все же помню: величина n — единственное положительное число, которое нигде не встречается в непрерывной дроби числа .

КРАБ: Какая жалость, что у вас нет с собой ваших записей. Так или иначе, у нас нет оснований сомневаться, что все, что вы нам сказали — чистая правда.

МУРАВЬЕД: Да и кому, в конце концов, нужно видеть n в десятичной записи? Ахилл же объяснил нам, как найти это число. Что ж, г-жа Черепаха, примите мои сердечные поздравления по поводу вашего эпохального открытия!

ЧЕРЕПАХА: Благодарю вас. Однако практическая польза, которую немедленно принес мой результат, кажется мне еще важнее теоретического открытия.

КРАБ: Смерть как хочется услышать об этом — ведь я всегда считал, что теория чисел — Царица Чистой Математики, единственная ветвь математики, не имеющая НИКАКОГО практического приложения.

ЧЕРЕПАХА: Вы не единственный, кто так думает; однако на деле почти невозможно предсказать, когда и каким образом какая-либо ветвь чистой математики — или даже какая-либо индивидуальная Теорема — повлияет на другие науки. Это происходит совершенно неожиданно, и данный случай — хороший тому пример.

АХИЛЛ: Обоюдоострый результат г-жи Черепахи прорубил дверь в область акусто-поиска.

МУРАВЬЕД: Что такое акусто-поиск?

Пьер де Ферма

АХИЛЛ: Название говорит само за себя: это поиск и извлечение акустической информации из сложных источников. Например, типичная задача акусто-поиска — восстановить звук, произведенный упавшим в воду камнем, по форме расходящихся по воде кругов.

КРАБ: Но это невозможно!

АХИЛЛ: Почему же? Это весьма похоже на то, что делает наш мозг, когда он восстанавливает звук, произведенный голосовыми связками другого человека, по колебаниям, переданным барабанной перепонкой далее по лабиринту ушной раковины.

КРАБ: Ясно. Но я все еще не вижу связи этого ни с теорией чисел, ни с моими новыми пластинками.

АХИЛЛ: Видите ли, в математике акусто-поиска часто возникают вопросы, связанные с числом решений неких Диофантовых уравнений. А г-жа Ч годами занималась тем, что пыталась восстановить звуки игры Баха на клавесине (что происходило более двухсот лет тому назад), основываясь на расчетах движения всех молекул в атмосфере в настоящее время.

МУРАВЬЕД: Но это же совершенно невозможно! Эти звуки утрачены навсегда, утеряны невозвратимо!

АХИЛЛ: Так думают непосвященные — но г-жа Ч посвятила много лет этой проблеме и пришла к выводу, что все зависит от количества решений уравнения

an + bn = cn

в положительных числах, при n > 2.

ЧЕРЕПАХА: Я могла бы объяснить, при чем здесь это уравнение, но не хочу наскучить присутствующим.

АХИЛЛ: Оказалось, что теория акусто-поиска предсказывает, что звуки баховского клавесина могут быть восстановлены по движению всех молекул атмосферы, при одном из двух условий: ЛИБО у этого уравнения есть хотя бы одно решение —

Поделиться:
Популярные книги

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Сиротка 4

Первухин Андрей Евгеньевич
4. Сиротка
Фантастика:
фэнтези
попаданцы
6.00
рейтинг книги
Сиротка 4

Последний попаданец 5

Зубов Константин
5. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 5

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

Мимик нового Мира 6

Северный Лис
5. Мимик!
Фантастика:
юмористическая фантастика
попаданцы
рпг
5.00
рейтинг книги
Мимик нового Мира 6

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Лапочки-дочки из прошлого. Исцели мое сердце

Лесневская Вероника
2. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Лапочки-дочки из прошлого. Исцели мое сердце