Чтение онлайн

на главную

Жанры

Шрифт:

Очень удобны полимерные материалы в полевом водоснабжении войск. Легкие и прочные, скатывающиеся в компактные рулоны емкости, легкие трубы, которые не разрушаются в случае замерзания воды, свободно гнутся при прокладке и свариваются, изготавливаются из пластмасс. Небольшой кусок пленки может превратиться в источник живительной влаги в пустыне, в районах, где отсутствует пресная вода или где вода загрязнена. Для этого достаточно вырыть в грунте воронкообразное углубление, глубиной несколько десятков сантиметров и диаметром около метра, и обложить стенки углубления листами растений, а на дно установить кружку или котелок, в который опустить трубку для питья. Сверху углубление закрывается куском прозрачной пленки, края которой обсыпаются грунтом. На середину пленки кладется груз, скажем, камень,

чтобы она приобрела форму воронки. На внутренней поверхности пленки конденсируется влага. По каплям она скатывается в кружку. Одно такое углубление за день может дать свыше литра чистой воды.

Итак, созданные химиками новые материалы находят все более широкое и разнообразное применение в военном деле. Несомненно, это открывает новые перспективы совершенствования военной техники и способов ведения боевых действий.

ПОМОЩНИКИ АТОМА

Инженер-капитан 1 ранга В. ГЕРАСИМОВ, кандидат технических наук

Когда говорят об атомном ракетоносном подводном флоте, обычно подчеркивают тот вклад, который внесла в его развитие физика. Действительно, благодаря атомным силовым установкам подводные корабли приобрели способность решать боевые задачи, длительное время не всплывая на поверхность. Однако это не исчерпывало всех проблем, возникавших перед учеными, инженерами, другими специалистами. Немало «поработать» пришлось и химии. Можно сказать больше: эта древняя и в то же время самая молодая наука сыграла решающую роль в превращении подводного корабля с баллистическими ракетами на борту в один из важнейших видов стратегического оружия.

Регенерация «подводной атмосферы»

Впервые в технике вопрос о необходимости создания искусственной атмосферы, пожалуй, встал именно перед конструкторами подводных лодок. Пополнение запасов кислорода в замкнутом объеме и удаление углекислого газа давалось не просто. Достаточно сказать, что лучшие дизель-электрические лодки могли непрерывно оставаться под водой не более трех суток. Теперь атомный подводный корабль в состоянии свыше двух месяцев не подниматься на поверхность, чтобы «глотнуть» воздуха. Как же этого удалось добиться?

Прежде всего напомним, что ядерный реактор полностью исключил потребление воздуха двигательной установкой. К тому же он снял жесткие ограничения на использование электроэнергии в подводном плавании. Стало возможным буквально в индустриальных масштабах решать проблему жизнеобеспечения экипажа. И все же трудностей оставалось немало. Чтобы их преодолеть, специалисты и обратились за помощью к химии.

Необходимый газовый состав атмосферы подводного корабля обеспечивает система регенерации воздуха. В ее состав входят кислородные баллоны и электролитические генераторы. Под действием постоянного тока в генераторах дистиллированная вода разлагается на кислород и водород. Одна такая установка, по данным зарубежной печати, способна производить до 70 кубометров кислорода в сутки. В качестве аварийного средства пополнения запасов кислорода химия предложила так называемые хлоратные свечи — цилиндрические шашки, спрессованные или отлитые из смеси хлората натрия, железного порошка и стеклянной ваты. При сгорании свечей хлорат натрия разлагается на поваренную соль и кислород. Одна свеча дает при этом до трех кубометров кислорода.

Удаление углекислоты в системе регенерации атомных подводных лодок США происходит в специальных химических реакторах — скрубберах. Их действие основано на способности жидкого органического вещества — моноэтаноламина — поглощать углекислый газ при пониженной температуре и снова выделять его при нагреве. Выделение углекислоты происходит в специальной камере скруббера — десорбере, откуда она удаляется за борт.

В аварийных условиях углекислый газ поглощает гидроокись лития. Она находится в контейнерах, через которые вентиляторами непрерывно прогоняется воздух.

Однако оказывается, еще недостаточно поддерживать в отсеках лодки заданную концентрацию кислорода и углекислого газа. Как показали исследования американских специалистов, воздух в отсеках содержит примеси почти 40 видов, половина которых относится к категории вредных для человека. Они образуются при работе различных систем и устройств корабля. Это окись углерода, окислы азота, фреон, водород, метан, аммиак и другие газы, а также взвеси. Борьба с ними на борту лодки ведется с применением обширного арсенала химических средств. Здесь и разнообразные фильтры — от древесноугольного, подобного тому, что используется в противогазах, до электростатических осадителей и каталитических реакторов.

Примером подобного реактора может служить установка для «дожигания» водорода и окиси углерода. Здесь нагретый воздух прокачивается через слой катализатора — гопкалита. При этом угарный газ окисляется в двуокись углерода, а водород — в пары воды. Очищенный воздух после охлаждения в теплообменнике возвращается в отсеки.

Многообразие и сложность химических процессов, привлекаемых для создания искусственной атмосферы на борту лодки, несут с собой и определенные трудности. Ведь всеми этими процессами нужно эффективно и согласованно управлять. Вот — почему специалисты стремятся отыскать новые, более простые способы и средства регенерации воздуха. В печати сообщалось, например, о разработке так называемого сульфатного цикла. Суть его заключается в том, что при электролизе сульфата натрия в особых условиях может выделяться кислород и одновременно поглощаться углекислый газ.

Не оставляют ученые попыток использовать для регенерации воздуха на подводных лодках и биологические процессы. Известно ведь, что растения на свету поглощают углекислый газ и выделяют кислород. Правда, исследования специалистов, проводившиеся на некоторых видах водорослей, практических результатов тюка не дали: слишком велики по объему получаются такие биологические реакторы — 170 литров на человека. Изыскиваются и принципиально новые методы удаления углекислоты путем вымораживания, использования молекулярных газовых фильтров.

Однако регенерация решает лишь одну часть задачи поддержания состояния «подводной атмосферы» на уровне необходимых гигиенических требований. Не менее важную роль в обеспечении обитаемости изолированных от внешнего мира отсеков подводной лодки играет кондиционирование воздуха, то есть создание микроклимата, благоприятного для жизнедеятельности экипажа. Более того, в связи с тем, что при работе ядерной энергетики выделяется очень большое количество тепла, кондиционирование воздуха стало просто жизненно необходимым. Не удивительно, что на современных подводных лодках создаются целые фабрики холода. Их часовая производительность нередко превышает миллион килокалорий. Так, на американской атомной лодке «Тритон» вес системы кондиционирования достигает 500 тонн.

Рабочим веществом — хладагентом — для рефрижераторов подводных лодок служат различные химические вещества. Прежде всего это широко известный газ фреон, который используют и в бытовых холодильниках. Правда, токсичность некоторых производных фреона и шум, который сопровождает работу фреоновых компрессоров, заставили специалистов перейти к новым, бромисто-литиевым абсорбционным холодильным машинам.

Синтетика в отсеках

Много и другой работы выпало на долю химии внутри подводного корабля. Взять хотя бы такую, на первый взгляд, мелочь, как окраска. Обычные масляные и эмалевые краски были забракованы. Кому не знаком их резкий запах, особенно сразу же после покраски? Правда, через некоторое время в хорошо вентилируемых помещениях он ослабевает, люди перестают его ощущать. Другое дело, когда такие краски применяют на подводных лодках. При длительном подводном плавании концентрация выделяемых ими вредных для человека газов неизбежно будет возрастать. Вот почему на американских атомных лодках, например, внутренние помещения окрашиваются акрильными латексными красками, которые перед покраской растворяются в воде. Они высыхают примерно за 20 минут, дают такой же блеск, как эмали, но не имеют запаха. Окрашенные акрильными красками стены хорошо моются. Этими же красками можно покрывать и внутренние палубы, так как красочный слой хорошо сопротивляется истиранию. Однако покрытия из акрильных красок разрушаются под действием морской воды и температуры свыше 70 градусов.

Поделиться:
Популярные книги

Хозяйка лавандовой долины

Скор Элен
2. Хозяйка своей судьбы
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Хозяйка лавандовой долины

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец

Сердце Дракона. Том 19. Часть 1

Клеванский Кирилл Сергеевич
19. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.52
рейтинг книги
Сердце Дракона. Том 19. Часть 1

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Я – Орк. Том 2

Лисицин Евгений
2. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 2

Запретный Мир

Каменистый Артем
1. Запретный Мир
Фантастика:
фэнтези
героическая фантастика
8.94
рейтинг книги
Запретный Мир

Ратник

Ланцов Михаил Алексеевич
3. Помещик
Фантастика:
альтернативная история
7.11
рейтинг книги
Ратник

Восьмое правило дворянина

Герда Александр
8. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восьмое правило дворянина

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Гром над Академией. Часть 1

Машуков Тимур
2. Гром над миром
Фантастика:
фэнтези
боевая фантастика
5.25
рейтинг книги
Гром над Академией. Часть 1

Падение Твердыни

Распопов Дмитрий Викторович
6. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Падение Твердыни

Кодекс Охотника. Книга IX

Винокуров Юрий
9. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга IX

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень