Хранители времени. Реконструкция истории Вселенной атом за атомом
Шрифт:
В 1896 году Антуан Анри Беккерель по счастливой случайности обнаружил радиоактивность Урана (см. гл. 6), а вслед за этим, в 1898 году, в компании радиоактивных элементов наравне с ним оказался и Торий (его радиоактивность установили Герхард Шмидт и, независимо от него, Мария Кюри). С этого началось еще более активное изучение обоих элементов. Вскоре стало очевидно, что в руде наравне с ними присутствовали и другие радиоактивные элементы, предварительно получившие названия мезоторий (из ториевых руд) и ионий (из ураниевых руд). Однако попытки выделить два новых элемента при помощи химических средств обернулись неожиданностью: ионий не отличался от самого Тория, а мезоторий в химическом отношении казался идентичным Радию, расположенному на две ступени ниже в Периодической таблице. Английский химик Фредерик Содди подвел итог сложившейся ситуации в 1910 году: «…элементы, имеющие различные атомные веса, могут
С учетом того, что относительный атомный вес играл ключевую роль в определении долей каждого типа атома в сложных веществах – и поэтому был важен для распознавания самих элементов, – этот вывод в какой-то степени приводил в замешательство. Последнее слово в этом споре прозвучало с появлением новой технологии – масс-спектрометра. 1 декабря 1919 года Фрэнсис Астон, физик, работавший в Кавендишской лаборатории в Кембридже, опубликовал статью с описанием своего «спектрографа положительных лучей»6. В этом устройстве использовалось сочетание электрических и магнитных сил, призванное на основании удельного заряда отклонить «положительные лучи», испущенные различными веществами (теперь мы называем эти «лучи» ионами), на отдельные приемники. Работая с Неоном, Астон показал, что поток, в котором все ионы обладали одинаковым зарядом, разделялся надвое, и массы атомов в двух потоках составляли 20 и 22. В последующие годы при помощи своего устройства он исследовал десятки различных элементов и определил 212 особых изотопов, способных существовать в природных условиях.
В ходе своих экспериментов Астон выяснил, что в том случае, когда изотопы одного и того же элемента были отделены друг от друга, каждый из них обладал атомным весом, очень близким к целому числу на шкале, рассмотренной нами в прошлой главе, где Углерод имел точно 12 единиц, а Водород – 1. Так, например, встречающийся в природе Хлор, атомная масса которого давно была измерена и составляла 35,45 массы Водорода, на самом деле представлял собой смесь двух разных изотопов элемента: 75,77 % Cl-35 и 24,23 % Cl-377. Когда в 1932 году Джеймс Чедвик открыл нейтрон, значение «правила целых чисел» Астона стало очевидным: атомный вес (или, если говорить в привычных нам сегодня терминах, атомная масса) – это просто сумма протонов и нейтронов, которые содержатся в ядре. Различные изотопы можно отличить по числу нейтронов, которые присутствуют в ядре наравне с четко установленным числом протонов (атомный номер), определяющим место каждого элемента в Периодической таблице (рис. 4.1).
Инвентарь изотопии
Каждый элемент от номера 1 (Водород) до номера 82 (Свинец) – за исключением двух случаев – имеет по меньшей мере один стабильный изотоп. У двадцати шести элементов есть только один (к таким, например, относятся Бериллий (4-й элемент); Фтор (9-й элемент); Натрий (11-й элемент); Алюминий (13-й элемент) и так далее8); рекордсмен – Олово (50-й элемент), у которого десять стабильных изотопов. Эти восемьдесят элементов в общей сложности содержат 254 изотопа, никогда не проявлявшие какой бы то ни было нестабильности.
Впрочем, среди восьмидесяти двух первых элементов выделяются два, которые не обладают стабильной формой: это Технеций (номер 43) и Прометий (номер 61). Два наиболее долгоживущих изотопа Технеция – это 97Te и 98Te, оба они в среднем способны существовать примерно 4,2 миллиона лет, однако самый распространенный изотоп (обнаруживаемый, наряду с Ураном, в настуране9) – это 99Te, присутствующий в мельчайшей концентрации примерно в 1 часть на 4 триллиона, и при этом срок его жизни – лишь 211 000 лет. Это означает, что со времен возникновения Земли – а это случилось 4,57 миллиарда лет тому назад, – Технеция просто не могло остаться, и эти изотопы, по всей вероятности, возникли в ходе естественных процессов, о которых мы поговорим в главе 6. Прометий, подобным образом, в крошечных количествах встречается в урансодержащих материалах; наиболее стабильный его изотоп – 145Pm, среднее время жизни которого составляет лишь 17,7 года.
После Свинца (номер 82) ни один из встречающихся в природе элементов (номера 83–94) не имеет даже одного стабильного изотопа, хотя некоторые из них отличаются завидной долговечностью и многое повидали еще с возникновения Солнечной системы. Рекордсменом в данном случае станет Висмут-209 (83-й элемент) с установленным сроком существования в 1,9 x 1019 лет, что более чем в миллиард раз превышает возраст Вселенной – он еще долго нас не покинет. Двое других изотопов-долгожителей из этой части Периодической таблицы – это Торий-232 со временем жизни в 14 миллиардов лет (в пределах нескольких процентных пунктов от возраста Вселенной) и Уран-238, срок жизни – 4,47 миллиарда лет, почти ровесник Земли. Как мы увидим в главе 6, «время жизни» в данном случае – это не конкретное число. Точно так же, как у людей средняя продолжительность жизни не означает, что каждый умирает в 78,6 года – много кто перешагнул этот рубеж, – поэтому вполне можно предположить, что какие-то из этих трех элементов присутствовали на Земле с самых первых дней ее формирования. Если учесть радиоактивные изотопы, которые обладают как стабильной, так и нестабильной формой, то в общем итоге у нас тридцать четыре различных изотопа, нестабильные, но способные прожить более ста миллионов лет. Эти неустойчивые, но долговечные изотопы удачно названы «первичными», поскольку они присутствовали в облаке, благодаря сгущению которого возникла Солнечная система.
Для других девяти самых тяжелых элементов характерен намного меньший срок существования – от 80,8 миллиона лет у Плутония-244 (номер 94) до всего лишь 22 минут у Франция-223 (номер 87). Даже десятки дополнительных нейтронов, которые пытаются удержать их ядра от распада, не могут преодолеть огромное электростатическое отталкивание протонов, стиснутых в крошечном пространстве. Эти (и прочие) изотопы, встречающиеся в природе, возникли не из материи, сформировавшей Землю, а постоянно образуются благодаря разрушению долгоживущих радиоактивных изотопов других элементов. Опять же, если учесть все виды элементов, порожденных непрестанно протекающим ядерным распадом, то на Земле таких изотопов пятьдесят три.
Таким образом, общее число изотопов, которые мы можем обнаружить в естественных условиях среди девяноста четырех элементов, составляет 339. Выражение «в естественных условиях» слегка обманчиво, поскольку оно относится к очень ограниченной сфере природы, представленной нашей Землей. В ядерных реакторах, полыхающих в недрах массивных звезд, в яростных взрывах, которыми оканчивается их жизнь, и в других колоссальных энергетических событиях, происходящих в космосе, например таких, как слияние двух нейтронных звезд, несомненно, возникает еще больше разновидностей изотопов (см. гл. 16). Однако все эти разновидности отличаются кратким временем жизни в сравнении с возрастом Земли, и в минералах, скрытых в земной коре, ни одна из них не присутствует.
Искусственные изотопы
Конечно же, многие из веществ современного мира не встречаются в естественных условиях – мы сами сочетаем элементы, формируем новые молекулы и создаем все эти вещества, от полиэтилена для пакетов, в которых носим бакалейные товары, до хлорфторуглеродов, на которых работают наши кондиционеры, и стрептомицина, призванного уничтожать бактерии. Все эти продукты проходят череду химических взаимодействий, представляющих собой перераспределение и соединение атомов в особых пропорциях посредством взаимного воздействия электронов друг на друга. Энергии, возникающие при данных реакциях, измеряются в электронвольтах (эВ) на молекулу (гл. 4). А если повысить энергию в десять миллионов раз или около того, возможно ли преобразить элементы, превратив один в другой, или даже создать совершенно новые изотопы?
Трансмутация элементарных форм была одним из высших стремлений алхимии, которую практиковали в Китае, Индии, Европе и арабском мире в донаучную эпоху. Само слово пришло к нам из средневекового арабского al-khimiya, где «аль» – это артикль, а последнее слово происходит от древнегреческого khemia, в буквальном смысле – «искусство превращения металлов». Первые письменные свидетельства об этой практике, в чем есть определенная ирония, приписываются автору, творившему под псевдонимом Демокрит (историкам он известен как Псевдо-Демокрит) из эллинистического Египта в I веке нашей эры. Цели алхимии выходили далеко за пределы набившего оскомину клише о превращении Свинца в Золото – алхимики искали и эликсир бессмертия, и лекарство от всех болезней (его называли «панацеей», от греческих слов pan [ «все»] и akos [ «лекарство»]). Конечно же, они не преуспели – ведь у них отсутствовала технология, позволяющая увеличить энергию в миллионы раз.