Интернет-журнал "Домашняя лаборатория", 2007 №6
Шрифт:
Во втором случае задача совсем другая. Дать ответ на вопрос «почему?», значит показать, что некое событие или идея вытекают из других положений более общего характера. Но показать, что частное следует из общего, можно лишь методами логики, а еще лучше — методами математики.
Задача литератора, вступившего на тяжелый путь ответов на вопросы «почему?», неизмеримо сложнее трудностей, с которыми сталкивается автор, описывающий ледники Кавказских гор или устройство моторного катера с новыми обводами. Ему надо тщательно выделить аксиомы, лежащие в основе объяснения, уменьшить для облегчения восприятия высоту логических ступеней, ведущих
Чтобы объяснение «дошло», читатель должен держать в памяти одновременно все логические переходы, и каждый из них должен быть настолько ясным, чтобы казаться само собой разумеющимся.
Поэтому-то тяжело приходится и автору и читателю.
Подобные трудности возникают и при рассказе о применении теории вероятностей к исследованиям газов.
Напоминаем, что макросостояние тела реализуется беспрерывно меняющимися микросостояниями. Число различных микросостояний огромно, но вычислять его физики умеют. Как это нужно делать, показал Людвиг Больцман.
А зачем нужно знать эти числа, которые нельзя записать цифрами, даже истратив на это все мировые запасы бумаги? Какой смысл они имеют?
Если вы внимательно прочитали предыдущие части книги, то вы сами поспешите с ответом. То, что число способов осуществления того или иного результата события пропорционально вероятности результата, вы знаете, не правда ли? А теперь мы выяснили, что число микросостояний есть число способов реализации макросостояния.
По законам логики из этих двух позиций железно следует, что число микросостояний пропорционально вероятности макросостояния.
Вероятность состояния… Как понять сочетание этих двух слов? В самом прямом смысле. Как всегда, вероятности познаются в сравнении. Что вероятнее: стакан горячего чая с лежащим на дне куском сахара или стакан горячего чая с растворившимся в нем сахаром? Что вероятнее: раскаленный кусок железа, лежащий на земле, или кусок железа, принявший температуру почвы?
Слишком простые вопросы, скажет читатель. Согласен. Но сумели бы вы на них ответить без помощи теоремы Больцмана, которую мы сейчас разъясняем? Оказывается, переход к равновесию является дорогой к наиболее вероятному состоянию.
Мне остается убедить вас в том, что вероятность состояния (равная числу микросостояний, которыми она осуществляется) действительно достигает максимума при равновесии.
Попробуем прийти к этому выводу с помощью аналогии. Раскроем книгу на странице 68 [ссылка] и вспомним смысл чисел, образующих тридцатую строку чудесного треугольника Паскаля. Напоминаю, что каждое число показывает, сколькими комбинациями можно прийти к одному макроскопическому результату, к одному состоянию. Общее число бросков рулеточного шарика равно 30. Поэтому макросостояние в тридцать «красных» (начало строки) осуществляется 1 способом, двадцать девять «красных» и один «черный» (следующее число строки) — 30 способами, двадцать восемь «красных» и два «черных» (третье число строки) — 435 способами… 15 «красных» и 15 «черных» (середина строки) — 155 117 520 способами. Разные способы осуществления одного и того же результата (то есть одного и того же отношения «черного» и «красного»), но отличающиеся лишь разным порядком их выхода, — превосходные аналоги макросостояния.
Каковы признаки наиболее вероятного макросостояния? Примерно равное количество «красного» и «черного», отсутствие преимущества того или другого цвета, наибольший беспорядок. Действительно, можно сказать: наиболее беспорядочными являются те серии бросков, что в середине строки, то есть те случаи, когда «черное» и «красное» подравниваются. Упорядоченными сериями являются такие, в которых наблюдается большой перевес одного цвета. Полный порядок — это одноцветная серия. Треугольник Паскаля показывает, что беспорядочные серии встречаются много чаще упорядоченных. Нетрудно понять, распространив этот вывод на мир молекул, для изображения которого с помощью треугольника Паскаля потребовалось бы число его строк довести до миллиарда миллиардов, что вероятности беспорядочных серий будут в невообразимое число раз превосходить вероятность порядка.
Аналогия, конечно, не всегда совершенный способ доказательства, но все же я надеюсь, что эти выводы читатель примет без внутреннего протеста. Для системы молекул беспорядок означает отсутствие особенных направлений движения, отсутствие особых мест скопления молекул, отсутствие каких-либо часто встречающихся скоростей. На языке рулетки это и значит — примерно равное число «черного» и «красного».
Из нашей аналогии следует далее, что неравновесное состояние является менее вероятным. Раз оно неравновесно, то в нем нарушены устойчивые пропорции быстрых и медленных молекул, плотность неоднородна по объему, имеются преимущественные направления движения молекул… То есть «черного» много больше, чем «красного».
Несколько страниц назад я принялся разъяснять фразу: «равновесное состояние является наиболее вероятным». Надеюсь, что я справился с этой задачей. Мы увидели, что наблюдаемое состояние тела осуществляется огромным числом микросостояний; выяснили, что число микросостояний пропорционально вероятности макросостояний; методом аналогии показали, что вероятность состояния возрастает с беспорядком в расположении и движении частиц. Из всего этого по законам логики мы пришли к этой действительно емкой фразе, усвоение которой, я боюсь, потребовало от читателя некоторого напряжения.
В студенческие годы мне попала в руки толстая книга в ярко-синем переплете, изданная в Томске. Это был курс термодинамики. В предисловии автор писал:
«Хочу предупредить учащихся о том, что понятие энтропии усваивается с большим трудом. Я лично понял, что такое энтропия, примерно после двадцати лет педагогической деятельности».
Я помню, как изумила меня наивная и откровенная скромность автора.
Содержание только что прочитанного параграфа приведет нас, как вы сейчас увидите, к понятию энтропии. Так что, если вам было трудно, не удивляйтесь.
ОБЕЗЬЯНА ЗА ПИШУЩЕЙ МАШИНКОЙ
Второе начало термодинамики является железным законом природы. На предыдущих страницах мы попытались сформулировать его на языке вероятности. Мы увидели, что равновесное состояние систем наиболее вероятное, и поэтому вполне понятно стремление всех тел и систем перейти к покою или, вернее, к «мертвой жизни». И вот вопрос — раз речь идет «всего лишь» о вероятностном законе, то почему не допустить, что второе начало может нарушаться и тела самопроизвольно могут выходить из положения равновесия? Зафиксированы же в истории Монте-Карло серии из двадцати двух выпадений красного подряд?!