Интерстеллар
Шрифт:
Приоритет квантовых законов
Наша Вселенная в основе своей квантовая. Под этим я имею в виду, что всё в ней флуктуирует, то есть случайным образом колеблется. Хотя бы чуть-чуть, но абсолютно всё!
Когда мы используем высокоточные инструменты для изучения крохотных объектов, мы видим сильные флуктуации. Положение электрона в атоме флуктуирует так быстро и так беспорядочно, что мы не можем знать, где находится электрон в тот или иной момент. И флуктуации электрона ограничиваются лишь размерами атома. Поэтому законы квантовой физики имеют дело не с конкретным положением электрона, а с вероятностями его положения (рис. 26.1).
Рис. 26.1.
Наблюдая с помощью высокоточных инструментов за большими объектами, мы тоже видим флуктуации. Но флуктуации больших объектов крайне малы. В детекторах гравитационных волн ЛИГО (см. главу 16 ) положения 40-килограммовых зеркал [81] определяются с помощью лазерных лучей. Положения зеркал флуктуируют, но величина этих флуктуаций намного – в десять миллиардов раз! – меньше размеров атома (рис. 26.2). Тем не менее лазерные лучи ЛИГО уже в течение нескольких лет отслеживают эти флуктуации. (Конструкция ЛИГО, однако, не позволяет флуктуациям мешать измерению гравитационных волн. Мы с моими учениками успели это доказать.)
81
Точнее, положения центров масс этих зеркал. Прим. автора.
Рис. 26.2. 40-килограммовое зеркало, подготовленное для установки в ЛИГО. Его положение квантовомеханически флуктуирует – очень-очень слабо, на одну десятимиллиардную от диаметра атома
Поскольку объектам человеческих и больших масштабов присущи лишь крохотные квантовые флуктуации, физики зачастую их не учитывают. Игнорирование флуктуаций сильно облегчает формулы и упрощает расчеты.
Если мы возьмем обычные квантовые законы, не учитывающие гравитацию, а затем отбросим флуктуации, мы получим законы ньютоновской физики – законы, которые в течение нескольких последних столетий использовались для описания планет, звезд, мостов и бильярдных шаров (см. главу 3 ).
Если же взять законы квантовой гравитации (о которых мы знаем пока немного) и пренебречь флуктуациями, то должны получиться законы теории относительности (которые изучены куда лучше). Флуктуации, которыми мы пренебрежем, – это, например, пена из крохотных флуктуирующих червоточин («квантовая пена», которой пронизано все пространство; см. рис. 26.3 и главу 14 ) [82] . Без учета флуктуаций законы теории относительности точно описывают искривление пространства и времени вблизи черной дыры и замедление времени на Земле.
82
В 1955 году Джон Уилер указал на возможность существования квантовой пены с червоточинами размером в 10–35 метра – в 10 триллионов триллионов раз меньше атома (так называемая планковская длина). Прим. автора.
Рис. 26.3. Квантовая пена. Есть некоторая вероятность (скажем, 0,4), что пена будет иметь форму а, другая вероятность (скажем, 0,5) – что b, и еще одна (0,1) – что с (Рисунок Мэтта Зимета по моему наброску; из [Торн 2009].)
Все это время мы вели к главному: если бы профессору Брэнду удалось открыть законы квантовой гравитации и для балка, и для нашей браны, тогда, исключив из этих законов флуктуации, он мог бы найти точную форму своего уравнения (см. главу 25 ). И узнал бы причину гравитационных аномалий и как ими можно управлять – то есть как можно их использовать для эвакуации человечества с Земли.
Профессор (в Кип-версии) хорошо это понимает. Кроме того, он знает, откуда можно получить законы квантовой гравитации. Из сингулярностей.
Сингулярности:
Источник сингулярности – это место, где искривление пространства и искривление времени возрастают неограниченно, где они становятся бесконечно большими.
Если мы представим, что искривленное пространство нашей Вселенной подобно волнующейся поверхности океана, тогда источник сингулярности похож на верхушку волны, которая вот-вот обрушится вниз, а недра сингулярности подобны бурлению разбившейся волны (рис. 26.4). Гладкая волна – перед тем, как она разобьется, – подчиняется «гладким» законам физики, таким как законы теории относительности Эйнштейна. Бурун требует иных законов – таких, как законы квантовой физики с их квантовой пеной.
Рис. 26.4. Сингулярность как верхушка океанской волны, которая вот-вот обрушится
Сингулярности лежат в сердцевинах черных дыр. Законы теории относительности однозначно говорят нам об этом, хоть они и не могут объяснить, что происходит внутри сингулярностей. Для этого предназначены законы квантовой гравитации.
В 1962 году я перешел из Калтеха (где окончил бакалавриат) в Принстонский университет, чтобы учиться на доктора физических наук. Я выбрал именно Принстон, потому что там преподавал Джон Уилер. Ведь Уилер тогда был флагманом в теории относительности.
Рис. 26.5. Джон Уилер в 1971 году читает лекцию о сингулярностях, черных дырах и Вселенной
Одним сентябрьским днем я с трепетом постучал в дверь кабинета профессора Уилера. Это была моя первая встреча с этим великим человеком. Широко улыбаясь, он приветствовал меня, провел внутрь и сразу же – как будто я был его достославным коллегой, а не полнейшим новичком – начал разговор о тайнах звездных коллапсов. Коллапсов, в результате которых образуются черные дыры с сингулярностями в их сердцевине. В этих сингулярностях, утверждал он, «вершится пылкий брак законов теории относительности с законами квантовой физики». Плоды этого брака, говорил Уилер, законы квантовой гравитации, в сингулярностях расцветают полным цветом. Если бы мы могли разобраться в сингулярностях, мы бы узнали законы квантовой гравитации. Сингулярности – это розеттский камень [83] для расшифровки квантовой гравитации.
83
Плита, найденная возле египетского города Розетта (Рашид); выбитый на ней текст послужил Жану-Франсуа Шампольону (1790–1832) отправной точкой для расшифровки египетских иероглифов. Прим. ред.
После этой персональной лекции я стал новообращенным. И множество других физиков после открытых лекций и статей Уилера встали на путь познания сингулярностей и законов квантовой гравитации. И этот путь до сих пор не пройден. Пока он привел нас к теории суперструн, которая, в свою очередь, привела к утверждению, что наша Вселенная – это брана, находящаяся в многомерном балке (см. главу 21 ).
Голые сингулярности?
Было бы чудесно, если бы мы могли найти или создать сингулярность вне черной дыры – сингулярность, которая не скрывалась бы за горизонтом событий. Голую сингулярность. Тогда задача профессора Брэнда была бы куда проще. Он мог бы извлечь необходимые квантовые данные из этой голой сингулярности прямо у себя в лаборатории.
В 1991 году мы с Джоном Прескиллом поспорили с нашим другом Стивеном Хокингом о голых сингулярностях. Прескилл – профессор в Калтехе, один из лучших в мире специалистов в области квантовой информации. Стивен – тот самый «парень на кресле-каталке», который успел мелькнуть в «Звездном пути», «Симпсонах» и «Теории Большого взрыва». А еще он один из величайших гениев нашего времени. Мы заключили пари: Джон и я считали, что законы физики допускают существование голых сингулярностей. Стивен утверждал, что нет (рис. 26.6).