IOT Интернет вещей
Шрифт:
Управление светодиодами
Arduino может управлять светодиодами, изменяя их яркость и цвет. Используя цифровые выходы, можно включать и выключать светодиоды, а с помощью ШИМ (широтно-импульсной модуляции) можно регулировать их яркость.
Пример простого кода для мигания светодиода:
```cpp
int ledPin = 13;
void setup {
pinMode(ledPin, OUTPUT);
}
void loop {
digitalWrite(ledPin, HIGH);
delay(1000);
digitalWrite(ledPin, LOW);
delay(1000);
}
```
Управление
Arduino также может управлять двигателями – постоянного тока, шаговыми или сервомоторами. Это позволяет создавать движущиеся конструкции, роботов и другие механические устройства.
Пример управления сервомотором:
```cpp
#include <Servo.h>
Servo myServo;
void setup {
myServo.attach(9);
}
void loop {
myServo.write(0); // Поворот на 0 градусов
delay(1000);
myServo.write(90); // Поворот на 90 градусов
delay(1000);
myServo.write(180); // Поворот на 180 градусов
delay(1000);
}
```
Считывание данных с датчиков
Одной из важнейших функций Arduino является возможность считывания данных с различных датчиков. Эти данные могут быть использованы для мониторинга окружающей среды или управления устройствами.
Температурные датчики
Температурные датчики, такие как LM35 или DHT11, позволяют измерять температуру и влажность. Данные с таких датчиков можно использовать для контроля климатических условий.
Пример кода для считывания данных с датчика температуры LM35:
```cpp
int tempPin = A0;
void setup {
Serial.begin(9600);
}
void loop {
int tempReading = analogRead(tempPin);
float voltage = tempReading * (5.0 / 1023.0);
float temperatureC = voltage * 100.0;
Serial.print("Temperature: ");
Serial.print(temperatureC);
Serial.println(" C");
delay(1000);
}
```
Датчики освещенности
Фоторезисторы и другие датчики освещенности позволяют измерять уровень освещенности. Эти данные могут использоваться для управления освещением или создания светочувствительных проектов.
Пример кода для считывания данных с фоторезистора:
```cpp
int lightPin = A0;
void setup {
Serial.begin(9600);
}
void loop {
int lightReading = analogRead(lightPin);
Serial.print("Light level: ");
Serial.println(lightReading);
delay(1000);
}
```
Arduino поддерживает несколько протоколов связи, что позволяет ему взаимодействовать с другими устройствами и микроконтроллерами, расширяя возможности проектов.
I2C (Inter-Integrated Circuit)
I2C – это двухпроводный протокол связи, используемый для подключения различных периферийных устройств, таких как датчики, дисплеи и EEPROM. Arduino может работать как мастер или ведомый в I2C-сети.
Пример подключения и считывания данных с датчика температуры и влажности на базе I2C:
```cpp
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>
Adafruit_BME280 bme;
void setup {
Serial.begin(9600);
Wire.begin;
if (!bme.begin(0x76)) {
Serial.println("Could not find a valid BME280 sensor, check wiring!");
while (1);
}
}
void loop {
Serial.print("Temperature = ");
Serial.print(bme.readTemperature);
Serial.println(" *C");
Serial.print("Humidity = ");
Serial.print(bme.readHumidity);
Serial.println(" %");
delay(2000);
}
```
SPI (Serial Peripheral Interface)
SPI – это высокоскоростной протокол связи, используемый для подключения устройств, таких как SD-карты, дисплеи и беспроводные модули. SPI обеспечивает быструю передачу данных и подходит для приложений, требующих высокой скорости обмена.
Пример использования SPI для подключения SD-карты:
```cpp
#include <SPI.h>
#include <SD.h>
File myFile;
void setup {
Serial.begin(9600);
if (!SD.begin(4)) {
Serial.println("Initialization failed!");
return;
}
myFile = SD.open("test.txt", FILE_WRITE);
if (myFile) {
Конец ознакомительного фрагмента.