Чтение онлайн

на главную - закладки

Жанры

Искатели необычайных автографов или Странствия, приключения и беседы двух филоматиков
Шрифт:

— Что касается общего числа комбинаций, то это и я могу, — говорит Фило. — Надо вычислить число сочетаний из четырнадцати рыбок по восьми. А это… Мате, где ваш блокнот? Это можно записать так: C148равно…

— Постойте, — не соглашается Мате, — зачем вычислять из 14 по 8? Не лучше ли воспользоваться известной формулой, где Cnm = C nn-m, то есть C148 = C146?

— В самом деле! Как это я забыл? Но вот вопрос: каким образом это С из четырнадцати по шести вычислить?

— Да

так, как это делал Ферма, когда вычислял число сочетаний из восьми по три. Вспомните: он выписывал первые восемь натуральных чисел и отделял в этом ряду слева и справа по три числа — 1, 2, 3 и 8, 7, 6. Затем он составлял дробь, где в числителе стоит произведение правой тройки чисел, а в знаменателе — левой…

— Не продолжайте, — перебивает Фило, — я уже все понял. Выписываем натуральный ряд чисел от 1 по 14, отделяем шесть чисел слева и столько же справа и составляем дробь: 14 х 13 х 12 х 11 х 10 х 9/1 х 2 х 3 х 4 х 5 х 6, что после сокращения дает 77 х 39. Итак, C148 = C146 = 77 х 39. Да, но как же мы вычислим число благоприятных случаев? — Фило мрачно взирает на блокнот. — Мате, Асмодей, что же вы молчите?

— Рассчитываете на меня, как на запасного игрока? — язвит Мате.

— Не будьте столь непреклонны, мсье! — заступается бес. — Не можем же мы отказать в помощи новичку, который делает первые шаги в научной комбинаторике! Так вот, мсье Фило, если две золотые рыбки уже выловлены, то из двенадцати оставшихся к ним надо добавить шесть любых. Иначе говоря, вычислить число сочетаний из двенадцати по шести, что равно вот чему:

C126= 12 х 11 х 10 х 9 х 8 х 7/1 х 2 х 3 х 4 х 5 х 6 = 77/12.

От избытка признательности Фило посылает ему воздушный поцелуй.

— Благодарю, благодарю и в третий раз благодарю! Но дальше я уж сам, хе-хе… Делим число благоприятных комбинаций на число всех возможных: C126на C148, и искомая вероятность у нас в кармане:

— Как, так мало? — Фило явно разочарован. — Стало быть в вашей сумке, Асмодей, нет ни одной золотой рыбки?

— Но-но-но, мсье! Не забывайте, с кем имеете дело! Тридцать три процента для черта — вероятность громадная!

Он щелкает пальцами, и на столе появляется наполненный водой аквариум. А спустя секунду в нем уже плавают восемь прехорошеньких рыбок. Две золотые, окруженные ресничками плавников, пламенеют среди них, как ненароком сорвавшиеся с неба и все еще не остывшие звездочки. Мате рассматривает их с нескрываемым удовольствием. Уж этот Асмодей! Где ему обойтись без фокусов…

— По-моему, он работает не хуже Акопяна, — восторгается Фило. — Как вы думаете, Мате?

Бес дурашливо раскланивается.

— Мсье, вы мне льстите! Однако программа наша еще не окончена. Оркестр, туш! Ваш выход, мсье Мате! Да, да, не смотрите на меня такими удивленными глазами. Надо же мне познакомиться с вашими собственными числовыми изысканиями!

— Полно, — смущается тот. — После Паскаля, Лейбница и Ньютона…

— Не боги горшки обжигают, мсье, — подбадривает черт. — Думаете, я не знаю, что один из ваших арифметических треугольников пригодился для решения некоего дифференциального уравнения, а другой — для расчета авиационного вала?

— Дела давно минувших дней. Знали бы вы, что я придумал месяц назад! Однажды я заинтересовался изосуммарными числами…

— Чем-чем? — переспрашивает Фило.

Оказывается, Мате изобрел это название сам. Приставка «изо» означает «равные». Следственно, изосуммарные числа — такие, у которых сумма цифр одинакова. Вот, например: 6, 15, 24, 33, 105, 204, 600. Сумма цифр у каждого из этих чисел равна 6. И значит, все они изосуммарные.

Для краткости Мате назвал сумму цифр индексом. И вот ему захотелось узнать, сколько имеется изосуммарных чисел с разными индексами, то есть равными единице, двойке, тройке и так далее. Сперва он стал их разыскивать среди однозначных чисел, затем среди двузначных, трехзначных, четырехзначных… А из найденных построил таблицу. Без таблицы, сами понимаете, в таком деле не обойтись.

— Перед вами таблица распределения изосуммарных

чисел, — продолжает Мате, раскрывая блокнот. — Здесь буква «k» — значность чисел. Она у меня помещается в левом столбце. Буква «i» — индекс числа. Индексы я отложил на верхней горизонтали. Как видите, индекс не превышает девяти, в то время как значность может быть любая, до бесконечности.

k\i 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 9
3 1 3 6 10 15 21 28 36 45
4 1 4 10 20 35 56 84 120 165
5 1 5 15 35 70 126 210 330 495
6 1 6 21 56 126 252 462 792 1287
7 1 7 28 84 210 462 924 1716 3003
8 1 8 36 120 330 792 1716 3432 6435
9 1 9 45 165 495 1287 3003 6435 12870
10 1 10 55 220 715 2002 5005 11440 24310

— А почему индекс, то есть сумма цифр, тоже не может возрастать до бесконечности? — сейчас же прилипает Фило.

— Все в свое время! Итак, вы видите, что количество изосуммарных чисел с индексом 1 всегда равно единице для любой значности.

— Стойте, — перебивает Фило. — Ваша таблица — это же числа треугольника Паскаля!

— Молодец, что заметили. У меня и в самом деле получился треугольник Паскаля, хотя и в форме прямоугольника, то есть в том виде, как его изображал Тарталья.

— Значит, — размышляет Фило, — по этой таблице можно заранее узнать, сколько существует, скажем, четырехзначных чисел, сумма цифр которых равна, допустим, пяти.

— Конечно. Надо только найти в ней число, стоящее в четвертой строке и в пятом столбце. Это — 35. Само собой, число это всегда можно выразить через формулу сочетаний.

— Каким образом?

— Подумайте сами. А я хочу сказать о другом. Если вы помните особенности Паскалева треугольника, то легко ответите на такой вопрос: как, НЕ ВЫСЧИТЫВАЯ, сразу определить по таблице, сколько всего изосуммарных чисел с каким-либо индексом (разумеется, не превышающим девяти) есть среди чисел всех значностей, начиная с однозначных и кончая любой заданной?

Поделиться:
Популярные книги

Проиграем?

Юнина Наталья
Любовные романы:
современные любовные романы
6.33
рейтинг книги
Проиграем?

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Сумеречный стрелок

Карелин Сергей Витальевич
1. Сумеречный стрелок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок

Кремлевские звезды

Ромов Дмитрий
6. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кремлевские звезды

Курсант: Назад в СССР 4

Дамиров Рафаэль
4. Курсант
Фантастика:
попаданцы
альтернативная история
7.76
рейтинг книги
Курсант: Назад в СССР 4

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Клеванский Кирилл Сергеевич
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.51
рейтинг книги
Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Действуй, дядя Доктор!

Юнина Наталья
Любовные романы:
короткие любовные романы
6.83
рейтинг книги
Действуй, дядя Доктор!

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

(Бес) Предел

Юнина Наталья
Любовные романы:
современные любовные романы
6.75
рейтинг книги
(Бес) Предел

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII

Ваше Сиятельство 8

Моури Эрли
8. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 8