Чтение онлайн

на главную - закладки

Жанры

Искусственный интеллект. Основные понятия
Шрифт:

Реактивная стратегия особенно эффективна в статичных или медленно изменяющихся средах, где текущее состояние обычно является достаточно надежным индикатором того, какие действия следует предпринять. Например, если робот перемещается в заранее известной структурированной среде, где препятствия не появляются или меняются редко, он может успешно использовать реактивную стратегию для навигации и избегания препятствий.

Однако реактивные стратегии могут оказаться недостаточно эффективными в сложных и динамичных средах, где долгосрочные последствия действий играют ключевую роль. В таких случаях агенту может потребоваться способность прогнозировать будущие состояния среды и принимать решения

на основе этих прогнозов. Тем не менее, в определенных контекстах, где высокая скорость реакции критически важна, реактивные стратегии могут оставаться предпочтительным выбором для агентов.

Примером применения реактивной стратегии может служить автономный автомобиль, движущийся по стабильной и хорошо изученной дорожной инфраструктуре. В таком случае автомобиль может использовать простую реактивную стратегию для навигации и управления, принимая решения на основе текущих условий дороги и окружающего транспорта.

Когда автомобиль обнаруживает препятствие или другие транспортные средства в своем пути, он может автоматически реагировать, изменяя свою траекторию движения или снижая скорость, чтобы избежать столкновения. Эти решения принимаются исходя из данных, полученных от различных сенсоров, таких как радары, камеры и лидары, которые постоянно сканируют окружающую среду в реальном времени.

В стабильной и предсказуемой дорожной среде, где препятствия редко появляются и маловероятны внезапные изменения условий, реактивная стратегия может обеспечить быстрое и безопасное движение автомобиля без необходимости в сложных моделях окружающей среды или долгосрочном планировании маршрута. Это делает такой подход эффективным для повседневного использования автономных автомобилей в условиях городского движения или на открытых автомагистралях.

Стратегии на основе знаний представляют собой альтернативный подход к принятию решений, где агент использует заранее известные правила, законы или модели для принятия обоснованных действий в окружающей среде. В отличие от реактивных стратегий, которые реагируют только на текущее состояние среды, стратегии на основе знаний позволяют агенту учитывать более широкий контекст и делать выводы на основе предварительно загруженных знаний о среде и ее функционировании.

Этот подход может быть особенно полезен в ситуациях, где агенту доступны определенные знания о своей среде и типичных сценариях поведения. Например, в медицинских экспертных системах агент может использовать заранее определенные медицинские протоколы и базы данных заболеваний для диагностики и рекомендации лечения пациентам. Также стратегии на основе знаний могут быть применены в робототехнике для выполнения задач, требующих точного знания среды, таких как навигация в лабиринте или управление манипуляторами для выполнения сложных манипуляций.

Хотя стратегии на основе знаний могут быть более эффективными в предсказуемых средах или при выполнении задач с четкими правилами и моделями, они могут быть менее гибкими в ситуациях, где среда изменчива или неопределенна. В таких случаях агенту может потребоваться способность адаптироваться к новым условиям и обучаться на лету, что может быть более сложно с использованием жестких заранее определенных стратегий.

Примером применения стратегий на основе знаний может служить автономный мобильный робот, предназначенный для навигации в большом складском помещении. Предположим, что в складе установлена система навигации, которая предоставляет роботу информацию о расположении различных полок, препятствий и точек назначения.

В этом случае робот может использовать заранее известные карты склада и алгоритмы планирования маршрута для эффективной навигации внутри помещения. На основе этих данных робот может выбирать оптимальные пути для доставки товаров с полок на точки назначения или для выполнения других задач, например, инвентаризации или перемещения грузов.

Предположим, что роботу необходимо доставить товары с определенной полки на точку выдачи. Он использует заранее загруженные данные о структуре склада и предпочитаемых путях движения. На основе этой информации робот планирует оптимальный маршрут, избегая препятствий и минимизируя время доставки. Это позволяет ему эффективно и безопасно перемещаться по складу, используя заранее известные знания о среде.

Таким образом, использование стратегий на основе знаний позволяет роботу принимать обоснованные решения на основе предварительно загруженных данных о среде и ее функционировании, что делает его более эффективным и надежным в выполнении задач навигации в предсказуемой среде, такой как складское помещение.

Обучение с подкреплением представляет собой мощный метод машинного обучения, при котором агент изучает оптимальные стратегии поведения, основываясь на наградах или штрафах, полученных в результате взаимодействия с окружающей средой. В этом подходе агенту не предоставляются заранее определенные правила или модели окружающей среды, а вместо этого он самостоятельно исследует среду, принимает действия и наблюдает за реакцией среды на эти действия.

Ключевой концепцией в обучении с подкреплением является понятие награды. Агент стремится максимизировать получаемую награду, что побуждает его выбирать действия, которые приведут к наилучшим результатам в долгосрочной перспективе. Например, в задаче управления мобильным роботом наградой может быть достижение целевой точки, а штрафом – столкновение с препятствием.

Путем исследования и взаимодействия с окружающей средой агент накапливает опыт, который используется для обновления его стратегии. Обучение с подкреплением часто основано на методах и алгоритмах, таких как Q-обучение, глубокое обучение с подкреплением и алгоритмы актор-критик.

Преимущество обучения с подкреплением заключается в его способности к адаптации к различным средам и сценариям, а также в возможности эффективного обучения оптимальным стратегиям в условиях сложных и динамических сред. Этот метод широко применяется в различных областях, включая автоматизацию, робототехнику, игровую индустрию, финансы и многие другие, где требуется принятие обоснованных решений в условиях неопределенности и изменчивости.

Примером применения обучения с подкреплением может служить обучение игровых агентов в компьютерных играх. Рассмотрим ситуацию, где агент обучается играть в классическую игру Atari Breakout, где необходимо разрушать блоки, управляя платформой, чтобы мяч отскакивал от нее и разбивал блоки.

В этом примере агенту предоставляется среда, представленная игровым экраном, на котором отображается текущее состояние игры. Агент должен принимать действия, направленные на максимизацию собранной награды, в данном случае – количество разрушенных блоков. Каждый раз, когда мяч отскакивает от платформы и разрушает блок, агент получает положительную награду, а если мяч падает и упускается, агент получает отрицательную награду.

Агент начинает обучение с подкреплением с некоторой случайной стратегии. Он исследует различные действия и наблюдает результаты своих действий. Постепенно агент начинает формировать представление о том, какие действия приводят к положительным наградам, а какие – к отрицательным.

Поделиться:
Популярные книги

Вперед в прошлое 3

Ратманов Денис
3. Вперёд в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 3

Никто и звать никак

Ром Полина
Фантастика:
фэнтези
7.18
рейтинг книги
Никто и звать никак

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник

Пропала, или Как влюбить в себя жену

Юнина Наталья
2. Исцели меня
Любовные романы:
современные любовные романы
6.70
рейтинг книги
Пропала, или Как влюбить в себя жену

Темный Патриарх Светлого Рода 6

Лисицин Евгений
6. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 6

Случайная мама

Ручей Наталья
4. Случайный
Любовные романы:
современные любовные романы
6.78
рейтинг книги
Случайная мама

На границе империй. Том 8

INDIGO
12. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8

Сердце Дракона. Том 19. Часть 1

Клеванский Кирилл Сергеевич
19. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.52
рейтинг книги
Сердце Дракона. Том 19. Часть 1

Кодекс Охотника. Книга V

Винокуров Юрий
5. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.50
рейтинг книги
Кодекс Охотника. Книга V

Дракон - не подарок

Суббота Светлана
2. Королевская академия Драко
Фантастика:
фэнтези
6.74
рейтинг книги
Дракон - не подарок

Беглец

Кораблев Родион
15. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Беглец

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Развод и девичья фамилия

Зика Натаэль
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Развод и девичья фамилия

Я еще не князь. Книга XIV

Дрейк Сириус
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще не князь. Книга XIV