Чтение онлайн

на главную

Жанры

Искусство схемотехники. Том 2 (Изд.4-е)
Шрифт:

Третий способ (уменьшение gm) применяется во многих ОУ. Например, НА2605 и НА2505 почти одинаковы, но НА2505. содержит эмиттерные резисторы во входном каскаде, которые увеличивают скорость нарастания ценой уменьшения коэффициента усиления разомкнутого контура. Это иллюстрируется приводимыми данными. ПТ ОУ с их малым gm входного каскада имеют более высокую скорость нарастания по тем же причинам.

Четвертый способ состоит в применении «перекрестно-сдвоенного уменьшения

крутизны», для которого требуется введение в схему входного каскада целого дополнительного набора транзисторов, болтающихся без дела при малых значениях сигнала, но всегда готовых, если нужно, дать дополнительный ток. Это дает выигрыш в виде улучшения характеристик ОУ по шумам и смещению, достающийся ценой некоторого усложнения схемы по сравнению с простой добавкой эмиттерных резисторов. Данный прием применяется в изделиях фирм Harris НА5141 и НА5151, Raytheon 4531, Signetics 535 и 538 для увеличения скорости нарастания при больших дифференциальных входных сигналах. Зависимость скорости нарастания от входного дифференциального сигнала показана на рис. 7.9.

Рис. 7.9.

Полоса пропускания и время установления. Скорость нарастания — это показатель того, насколько быстро может изменяться напряжение выходного сигнала. Спецификация ОУ по скорости нарастания дается обычно в предположении большого дифференциального входного напряжения (60 мВ и более), что вполне оправдано: при обычно встречающихся на практике значениях петлевого усиления ОУ, выходное напряжение которого отличается от того, которое, должно быть, будет испытывать на входе сильное воздействие сигнала по цепи обратной связи. В высокоскоростных прецизионных схемах не менее важно время установления выходного сигнала на том значении, к которому оно стремится, следуя за изменением входного. Этот параметр — время установления (время, необходимое для установления выходного сигнала с заданной точностью на окончательное значение, см. рис. 7.10) — всегда приводится в паспортах таких устройств как цифро-аналоговые преобразователи, где точность — суть игры, а для ОУ он обычно не указывается.

Рис. 7.10. Определение времени установки. * Иногда определяется при Uвых = логический порог или при Uвых = 0,5Uконечн.

Мы сможем оценить время установления ОУ, рассмотрев вначале другую проблему, а именно: что произойдет с идеальным скачком напряжения в некоторой цепи, нагруженной на простой RC-фильтр низкой частоты (рис. 7.11).

Рис. 7.11. Время установления RС-фильтра нижних частот.

Несложно вычислить, что отфильтрованный сигнал будет иметь время установления, указанное на этом рисунке. Это действительно важный результат, поскольку часто мы ограничиваем при помощи фильтра полосу пропускания, чтобы уменьшить шум (об этом еще будет сказано в этой главе).

Распространяя этот простой результат на ОУ, достаточно вспомнить, что ОУ с частотной коррекцией имеет спад 6 дБ/октава, точно так же, как и НЧ-фильтр. При включении ОУ в схему с ОС, имеющую коэффициент усиления К, ее «полоса пропускания» (частота, на которой петлевое усиление падает до единицы) приближенно определяется выражением:

f– ЗдБ = fcp/K.

Как основной результат можно отметить, что система с полосой пропускания В имеет время реакции = 1/2; отсюда следует, что эквивалент «постоянной времени» ОУ равен

~= K/2fcp.

При этом время установления грубо можно оценить как 5 : 10.

Попробуем применить наш прогноз к реальности. ОР-44 производства фирмы PMI — это прецизионный быстродействующий некомпенсированный (К >= 3) ОУ с типичным значением fср 23 МГц. Наша простая формула дает оценку времени реакции, равную 21 нc, что соответствует времени установления 0,15 мкс (7) до 0,1 %. Это очень хорошо совпадает с реальным значением 0,2 мкс, приводимым в паспорте на ОУ в качестве типичного для точности установления 0,1 %.

Стоит отметить несколько моментов: (а) наша простая модель дает нам только нижнюю границу фактического значения времени установления в реальной схеме; всегда нужно проверить еще ограниченное скоростью нарастания время нарастания, которое может быть определяющим; (б) даже если скорость нарастания не создает проблем, время установления может быть много больше, чем в нашей идеализированной «однополюсной» модели; это зависит от схемы компенсации ОУ и запаса по фазе; (в) ОУ устанавливается тем быстрее, чем лучше применяемая схема частотной компенсации обеспечивает зависимость сдвига фазы от частоты в разомкнутой петле в виде прямой линии при логарифмическом масштабе (например, ОР-42, рис. 7.12);

Рис. 7.12.Частотные зависимости усиления и сдвига фазы ОР-42.

ОУ, имеющие колебания на фазово-частотной характеристике, более склонны к выбросам и пульсациям, вроде тех, что показаны на графике рис. 7.10; (г) быстрое установление с точностью до 1 % не обязательно гарантирует быстрое установление в пределах 0,1 %, может существовать «длинный хвост» (рис. 7.13); (д) прямая подстановка в реальный случай приводимого изготовителем значения времени установления не всегда пригодна.

В табл. 7.3 приведен ряд быстродействующих ОУ для применений, требующих большого значения fср, высокой скорости нарастания и малого времени установления.

Рис. 7.13. апо мере подхода входной погрешности к зоне 60 мВ скорость нарастания уменьшается; б — установка с высокой точностью может длиться удивительно долго.

Погрешность коэффициента усиления. Существует еще одна погрешность, причиной которой является конечное значение коэффициента усиления без ОС, а именно: погрешность коэффициента усиления при замкнутой ОС из-за конечного петлевого усиления. В гл. 3 мы вывели выражение для коэффициента усиления реальный усилителя с замкнутой петлей ОС, КА/(1 + АВ), где А — коэффициент усиления без ОС, а В — «усиление» цепи обратной связи. Можно было бы предположить, что величина коэффициента усиления ОУ без обратной связи А >= 100 дБ является вполне достаточной, но если мы попробуем сконструировать сверхпрецизионную схему, то здесь нас ожидает сюрприз. Из предыдущего выражения для коэффициента усиления нетрудно показать, что «погрешность усиления», определяемая как

Поделиться:
Популярные книги

Приручитель женщин-монстров. Том 3

Дорничев Дмитрий
3. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 3

Хозяйка лавандовой долины

Скор Элен
2. Хозяйка своей судьбы
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Хозяйка лавандовой долины

Совок 9

Агарев Вадим
9. Совок
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Совок 9

Столичный доктор

Вязовский Алексей
1. Столичный доктор
Фантастика:
попаданцы
альтернативная история
8.00
рейтинг книги
Столичный доктор

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Ваше Сиятельство 5

Моури Эрли
5. Ваше Сиятельство
Фантастика:
городское фэнтези
аниме
5.00
рейтинг книги
Ваше Сиятельство 5

Удиви меня

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Удиви меня

Прогрессор поневоле

Распопов Дмитрий Викторович
2. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прогрессор поневоле

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Измена. За что ты так со мной

Дали Мила
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. За что ты так со мной

Неожиданный наследник

Яманов Александр
1. Царь Иоанн Кровавый
Приключения:
исторические приключения
5.00
рейтинг книги
Неожиданный наследник

Снегурка для опера Морозова

Бигси Анна
4. Опасная работа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Снегурка для опера Морозова

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

Идущий в тени 5

Амврелий Марк
5. Идущий в тени
Фантастика:
фэнтези
рпг
5.50
рейтинг книги
Идущий в тени 5