Истину можно вычислить
Шрифт:
Чем объясняется такая неравномерность в описании разных годов? Одно из объяснений таково. Летописец более подробно описал данный «древний год», поскольку от этого «древнего года» до него дошло больше уцелевшей информации. Например, больший объем старых документов, чем от соседних лет.
Схема дальнейших наших рассуждений такова.
1. Мы сформулируем ТЕОРЕТИЧЕСКУЮ МОДЕЛЬ, то есть СТАТИСТИЧЕСКУЮ ГИПОТЕЗУ, позволяющую предсказывать, какие именно годы из интервала времени (А, В) будут подробно описаны позднейшим летописцем, уже не являющимся современником описываемых им древних событий.
2. Затем мы математически формализуем эту статистическую модель, гипотезу.
3. Проверим
4. Обнаружив, что теоретическая модель подтверждается в эксперименте, мы предложим методику датирования древних событий.
Пусть С(t) — объем всех текстов, написанных о годе t современниками этого года, рис. 2. Как и выше, построим числовой график объема на интервале времени (А, В). Конечно, точный вид этого графика С(t) сегодня нам НЕИЗВЕСТЕН. Дело в том, что с течением времени первичные тексты, написанные современниками событий года t, постепенно утрачиваются. До наших дней дошла лишь какая-то их часть. График С(t) можно назвать ГРАФИКОМ ПЕРВИЧНОГО ФОНДА ИНФОРМАЦИИ. Пусть из эпохи (А, В) современники наиболее подробно описали некоторые годы, то есть зафиксировали об этих годах особенно много сведений. Причины такой «первичной неравномерности» мы здесь обсуждать не будем, так как они для нас сейчас не важны. На языке графика объема С(t) такие «подробно описанные современниками» годы будут выделяться тем, что именно в эти годы график объема делает всплески.
Рис. 2. График «первичного фонда информации» C(t) и график «уцелевшего фонда информации» (то есть текстов, сохранившихся до эпохи M) делают всплески практически одновременно.
Спрашивается: каков механизм потери и забывания письменной информации, приводящий с течением времени к уменьшению высоты графика C(t) и к его искажению? Сформулируем МОДЕЛЬ ПОТЕРИ ИНФОРМАЦИИ.
Хотя с течением времени высота графика C(t) уменьшается, тем не менее, ОТ ТЕХ ЛЕТ, В КОТОРЫЕ ИХ СОВРЕМЕННИКАМИ БЫЛО НАПИСАНО ОСОБЕННО МНОГО ТЕКСТОВ, БОЛЬШЕ И ОСТАНЕТСЯ.
Для переформулировки этой модели полезно поступить следующим образом. Фиксируем какой-то момент времени M справа от точки В на рис. 2 и построим график CM(t), показывающий объем текстов, которые «дожили» до момента времени M и описывают события года t из исторической эпохи (А, В).
Другими словами, число CM(t) указывает объем первичных древних текстов от года t, сохранившихся до «момента наблюдения фонда» в год M. График CM(t) можно условно назвать графиком «остаточного фонда информации», сохранившегося от эпохи (А, В) до года M. Теперь наша модель может быть переформулирована таким образом.
ГРАФИК ОБЪЕМА ОСТАТОЧНОГО ФОНДА CM(t) ДОЛЖЕН ИМЕТЬ ВСПЛЕСКИ ПРИМЕРНО В ТЕ ЖЕ ГОДЫ НА ИНТЕРВАЛЕ ВРЕМЕНИ (А, В), ЧТО И ИСХОДНЫЙ ГРАФИК ПЕРВИЧНОГО ФОНДА ИНФОРМАЦИИ C(t).
Разумеется, проверить модель в таком ее виде трудно, поскольку график C(t) первоначального фонда информации сегодня нам точно неизвестен. Но одно из следствий теоретической модели (гипотезы) проверить все-таки можно.
Поскольку более поздние летописцы X и Y, описывая один и тот же исторический период (А, В) и один и тот же «поток событий», уже не являются современниками этих древних эпох, то они вынуждены опираться на приблизительно
На языке графиков объема эта модель выглядит так. Если летописец X живет в эпоху M, то он будет опираться на остаточный фонд CM(t). Если другой летописец Y живет в эпоху N, отличную, вообще говоря, от эпохи M, то он опирается на сохранившийся фонд информации CN(t). Рис. 3. Естественно ожидать, что «в среднем» летописцы X и Y работают более или менее добросовестно, а потому они должны подробнее описать те годы из древней (для них) эпохи (А, В), от которых до них дошло больше информации, больше старых, текстов.
Другими словами, график объемов vol X(t) будет иметь всплески примерно в те же годы, где делает всплески график CM(t). В свою очередь, график vol Y(t) будет иметь всплески примерно в те же годы, где делает всплески график CN(t), см. рис. 3.
Рис. 3. Графики уцелевших фондов информации делают всплески примерно там же, где и график первичного фонда C(t). Функции объемов летописей X и Y делают всплески примерно в тех же точках, где и графики объема информации, уцелевшей до их времени.
Но точки всплесков графика остаточного фонда CM(t) БЛИЗКИ к точкам всплесков исходного, первичного графика C(t). Аналогично и точки всплесков графика остаточного фонда C (t) близки к точкам всплесков первичного графика C(t) Следовательно, графики объемов летописей X и Y, то есть графики vol X(t) и vol Y(t), должны делать всплески ПРИМЕРНО ОДНОВРЕМЕННО, «в одних и тех же» точках на оси времени. Другими словами, точки их локальных максимумов должны заметно коррелировать, см. рис. 1.
При этом, конечно, АМПЛИТУДЫ графиков vol X(t) и vol Y(t) могут быть существенно различны, рис. 4. Что, очевидно, не влияет на изложенные соображения.
Рис. 4. Графики объемов зависимых летописей X и Y, то есть говорящих примерно об одной и той же эпохе, делают всплески практически одновременно. Однако величины всплесков могут быть существенно различными.
Окончательно ПРИНЦИП КОРРЕЛЯЦИИ МАКСИМУМОВ формулируется так. Предыдущие рассуждения могут сейчас рассматриваться лишь как наводящие соображения.
ПРИНЦИП КОРРЕЛЯЦИИ МАКСИМУМОВ:
а) Если две летописи (текста) X и Y ЗАВЕДОМО ЗАВИСИМЫ, то есть описывают один и тот же «поток событий» исторического периода (А, В) одного и того же государства Г, то графики объемов летописей X и Y ДОЛЖНЫ ОДНОВРЕМЕННО ДОСТИГАТЬ ЛОКАЛЬНЫХ МАКСИМУМОВ (ДЕЛАТЬ ВСПЛЕСКИ) на отрезке (А, В). Другими словами, годы, «подробно описанные в летописи X», и годы, «подробно описанные в летописи Y», должны быть близки или совпадать, см. рис. 4.