История астрономии. Великие открытия с древности до Средневековья
Шрифт:
Итак, мы подошли к концу нашего разговора об астрономических взглядах Платона. В его различных утверждениях о мироздании нет абсолютно ничего, что бы хоть сколько-нибудь показывало, что он уделял много внимания подробностям движения небесных тел, и он никогда не выходит за рамки самых простых и самых общих фактов относительно вращения планет. Хотя концепция мира как Космоса, божественного произведения искусства, в который вечные идеи вдохнули жизнь и который обладает самой богоподобной душой среди всех душ, является ведущей в его философии, судя по всему, его никогда особенно не интересовали подробности научных исследований, ведь он ставил математику ниже чистой философии, поскольку она принимает некоторые свои предположения за не требующие доказательства, и по этой причине он считает философию более отчетливой, чем простое мнение, но и не столь очевидной, как настоящая наука («Государство», с. 533). Но какой бы сырой ни была его астрономическая система, чистой воды геоцентрическая, все же поэтической концепции «души мира» присуще несомненное очарование, благодаря которому изложенные в «Тимее» взгляды кажутся особо привлекательными. Однако в истории астрономии она не играет особой роли, хотя нельзя и забывать, что Платон благодаря своим популярным трудам способствовал широкому распространению пифагорейской доктрины о шарообразной форме Земли и орбитальном движении планет с запада на восток. Однако в основном по причине разнообразных споров, вызванных астрономической системой Платона, мы сочли желательным подвергнуть ее довольно пространному анализу в данной книге.
Глава 4
Гомоцентрические сферы Евдокса
Обзор астрономических воззрений Платона показал нам, что философы первой половины IV века до н. э. обладали некоторыми знаниями о движении планет. Конечно, нельзя сказать, что тогда уже существовали астрономические инструменты, даже самые грубые, за исключением гномона, чтобы следить за ходом
Евдокс родился в Книде, что в Малой Азии, около 408 года до н. э., а умер на 53 году жизни, около 355 года [79] . В возрасте двадцати трех лет он отправился в Афины и несколько месяцев посещал лекции Платона, но, не удовлетворенный знаниями, которые он мог получить в Греции, отправился в Египет с рекомендательными письмами от царя Спарты Агесилая к царю Египта Нектанебу. Он пробыл там не меньше года, а возможно, и гораздо дольше (примерно до 378 г. до н. э.), и слушал наставления жреца в Гелиополе. По Сенеке («Естественно-научные вопросы», VIII, 3), именно там он приобрел знания о движениях планет, но, хотя такая вероятность существует, у нас нет оснований думать, что Евдокс привез свою математическую теорию этих движений из Египта, так как в этой стране, насколько нам известно, математика добилась совсем небольшого прогресса [80] . Диоген Лаэртский, который ничего не говорит о научных трудах Евдокса, не упускает сказать, что египетский бык Апис облизал его одежду, после чего жрецы предсказали, что он проживет недолгую, но блестящую жизнь. Если это пророчество действительно имело место, оно оказалось верным, так как Евдокс стоит в первейших рядах греческих математиков. Евклид обязан ему большей частью своей пятой книги, если не всей целиком, вместе с так называемым методом исчерпывания, при помощи которого греки смогли решить множество задач по измерению бесконечно малых величин. Плутарх говорит нам («О демоне Сократа», VIII), что Платон, когда к нему обратились за советом насчет знаменитой делийской задачи – удвоения куба, сказал, что лишь двое способны решить ее: Евдокс и Геликон; и даже если эта история недостоверна, она показывает, какой славой пользовался Евдокс как математик. В истории астрономии он также известен тем, что первым предложил солнечный цикл в 4 года, три по 365 дней и один год из 366, который триста лет спустя ввел Юлий Цезарь. Таким образом, он обладал всеми способностями, чтобы с успехом разобраться со сложной проблемой планетного движения, решить которую предложил ему Платон (как говорит Симпликий в комментарии к «О небе», с. 488), и плодом его труда стала необычайно изобретательная космическая система, учитывавшая в себе главные небесные явления, насколько они были известны в его дни.
79
Страбон (с. 119) говорит, что обсерватория Евдокса (в Книде) была ненамного выше обычных домов, но все же он смог увидеть из нее звезду Канопус.
80
Каковы бы ни были познания египтян в геометрии, нет никаких сомнений, что греки намного обогнали их еще задолго до времен Евдокса.
Эта система концентрических сфер, которую перенял и слегка улучшил Каллипп, нам известна по короткому описанию в «Метафизике» Аристотеля (А 8) и по пространному изложению, которое дает Симпликий в своем комментарии на книгу Аристотеля «О небе» (II, 12, с. 493—506). Системы Гиппарха и Птолемея в конце концов превзошли ее, и прекрасная система Евдокса была практически забыта. Историки астрономии друг за другом, в действительности не зная о ней ничего, кроме того, что она предполагала существование большого числа сфер, удовлетворились всего лишь несколькими презрительными ремарками об ее нелепости. Никто не замечал, говоря математически, невероятной элегантности системы, пока Иделер в двух работах в Transactions of the Berlin Academy за 1828 и 1830 годы не привлек внимания к теории Евдокса и не объяснил ее принципов. Однако честь полного овладения системой и исследования вопроса, насколько полно она могла объяснить наблюдаемые феномены, всецело принадлежит Скиапарелли, который показал, что она совершенно не заслужила того пренебрежения и презрения, которыми так долго удостаивали систему гомоцентрических сфер, и что нам следовало бы восхищаться острым умом ее создателя. Ниже мы расскажем об этой системе в том виде, в каком ее изложил Скиапарелли.
Хотя разнообразные космологические системы, которые предлагали философы от древних веков до эпохи Кеплера, значительно отличаются друг от друга как в общих принципах, так и в деталях, их объединяет одна общая идея: что планеты движутся по круговым орбитам. Этот принцип признавал и Евдокс, но он прибавил к нему еще один, чтобы сделать свою систему простой и симметричной. Он предположил, что все сферы, которые представляется необходимым ввести в систему, расположены одна внутри другой и концентрически по отношению к Земле, и по этой причине через много лет они стали известны как гомоцентрические сферы. Несомненно, это существенно усложнило объяснение непростых явлений, но зато система приобрела большую симметрию и красоту и в то же время стала гораздо более разумной с точки зрения физики, чем любая возможная система эксцентрических кругов. Предполагалось, что каждое небесное тело расположено на экваторе сферы, которая вращается с равномерной скоростью вокруг двух полюсов. Для объяснения стояний и ретроградного движения планет, а также их движения по широте Евдокс выдвинул гипотезу, что полюса планетной сферы не являются неподвижными, а уносятся большей сферой, концентрической с первой, вращающейся с иной скоростью вокруг двух полюсов, отличных от полюсов первой планеты. Поскольку этого было недостаточно, чтобы объяснить все явления, Евдокс разместил полюса второй сферы на третьей, концентрической с первыми двумя, но большей и движущейся вокруг отдельных полюсов со своей собственной скоростью. Те сферы, которые сами не уносили с собой планету, по Феофрасту, именовались avacrcpoi, или беззвездными. Евдокс обнаружил, что при подходящем выборе полюсов и скорости вращения можно воспроизвести движение Солнца и Луны, предположив по три сферы на каждое из этих светил, но для более сложных движений пяти планет было необходимо уже по четыре сферы на каждую, причем движущиеся сферы каждого светила совершенно не зависели от сфер остальных. Для неподвижных звезд, конечно, было достаточно одной сферы для суточного вращения небес. Таким образом, общее число сфер составило двадцать семь. Не похоже, что Евдокс высказывал теории о причине всех этих круговращений или о веществе, толщине или расстояниях между сферами. Из слов Архимеда (в его «Псаммите») мы знаем только, что, по оценке Евдокса, Солнце в девять раз больше Луны, из чего можно сделать вывод, что он считал, что Солнце находится в девять раз дальше Луны. То ли он просто взял сферы как математический способ представить и, соответственно, рассчитать движение планет, то ли он действительно верил в физическое существование всех этих сфер, точно неизвестно. Но так как Евдокс не сделал попыток соединить движения разных групп сфер друг с другом, он, вероятно, рассматривал их лишь как геометрические построения, пригодные для вычисления видимых путей планет.
Евдокс объяснил свою систему в книге «О скоростях», впоследствии утерянной, как и все его остальные сочинения. Аристотель, который лишь на поколение младше Евдокса, узнал о его системе от Полемарха, знакомого с ее создателем. Евдем подробно описал ее в своей утраченной истории астрономии, а из этого труда описание перешло в сочинение о сферах, написанное Созигеном, философом-перипатетиком, который жил во второй половине II века н. э. Этот труд тоже утерян, но длинный отрывок из него сохранился в комментарии Симпликия, и, таким образом, мы обладаем подробным описанием системы Евдокса [81] .
81
Симпликий также цитирует в этой связи Александра Афродисийского и Порфирия, философа-неоплатоника.
В то время как все другие античные и средневековые космологические системы (кроме тех, что признают вращение Земли) объясняют суточное движение Солнца, Луны и планет по небу тем допущением, что сфера неподвижных звезд во время своего ежедневного вращения увлекает за собой все остальные сферы, система Евдокса для этой цели предусматривает отдельный механизм у каждой планеты, тем самым добавляя в целом семь сфер к количеству, необходимому для других целей. Так, движение Луны производится тремя сферами; первая и самая дальняя из них совершает оборот с востока на запад за двадцать четыре часа, как неподвижные звезды; вторая вращается с запада на восток вокруг оси зодиака, вызывая ежемесячное движение Луны вокруг небес; третья сфера медленно поворачивается, по Симпликию, в том же направлении, что и первая, вокруг оси, наклоненной к оси зодиака под углом равным самой высокой широте, которой достигает Луна, причем Луна помещена на том, что мы могли бы назвать экватором этой третьей сферы. Третью сферу понадобилось добавить, говорит Симпликий, потому что Луна достигает наивысшей северной и южной широты не в одних и тех же точках зодиака, а в точках, которые перемещаются по зодиакальному кругу в направлении противоположном порядку двенадцати знаков. Другими словами, третья сфера должна объяснить ретроградное движение узлов лунной орбиты за 18 1/2 года. Однако легко увидеть (как указал Иделер), что Симпликий допустил ошибку, утверждая, что самая внутренняя сфера движется очень медленно и в описанном порядке; так как Луна в такой схеме будет проходить лишь один раз через каждый узел за 223 лунации и находиться к северу от эклиптики в течение девяти лет, а затем к югу от нее в течение еще девяти лет. Очевидно, что Евдокс должен был учить, что внутренняя сфера (несущая Луну) вращается за 27 дней [82] с запада на восток вокруг оси, наклоненной под углом равным максимальной широте Луны, относительно оси второй сферы, причем вторая совершает оборот по зодиаку за 223 лунации в обратном направлении. Таким образом эти явления получают полное объяснение, вернее, насколько их знал Евдокс, потому что он, по-видимому, ничего не знал об изменении скорости Луны по долготе, хотя ниже мы увидим, что Каллиппу это уже было известно в 325 году до н. э. Но то, что движение лунного узла было известно на сорок или пятьдесят лет раньше, доказывает лунная теория Евдокса.
82
А точнее, за 27 дней 5 часов 5 минут 36 секунд – драконический месяц.
Что же касается солнечной теории, то от Аристотеля мы узнаем, что она также основана на трех сферах: одна совершает такое же суточное движение, как и сфера неподвижных звезд, вторая вращается по зодиаку, а третья – по кругу, наклоненному к зодиаку. Симпликий подтверждает это и прибавляет, что третья сфера, в отличие от лунной, вращается не в обратном направлении относительно второй, а в том же, то есть в направлении зодиакальных знаков, и намного медленнее, чем вторая сфера. Здесь Симпликий допускает ту же ошибку, что и в описании лунной теории, так как Солнце, по его описанию, веками находилось бы в северной или южной широте и за год описывало бы небольшой круг, параллельный эклиптике, вместо большого круга. Конечно, медленно двигаться должна вторая сфера, причем в направлении по зодиаку, тогда как движение второй сферы должно происходить за год [83] по наклонному большому кругу, который должен описывать центр Солнца. Этот круг посредством второй сферы поворачивается вокруг оси зодиака, и Евдокс предполагал, что его узлы на эклиптике совершают очень медленное движение вперед, а не обратно, как лунные узлы. Годовое движение Солнца предполагалось совершенно единообразным, то есть Евдокс, по всей видимости, отвергал замечательное открытие, сделанное Метоном и Евктемоном примерно за 60—70 лет до того, а именно что Солнцу требуется не одно и то же время, чтобы описать четыре квадранта своей орбиты между равноденствиями и солнцестояниями [84] .
83
Строго говоря, за период несколько дольше тропического года из-за предполагаемого медленного прямого движения второй сферы.
84
Это согласуется с утверждением в так называемом Папирусе Евдокса, что этот астроном определял продолжительность осени в 92 дня, а продолжительность трех остальных времен года – в 91 день. Этот папирус был написан около 190 года до н. э. и, видимо, был ученической тетрадью, возможно наскоро набросанной во время нескольких лекций или после них.
Весьма примечательно, что, хотя Евдокс таким образом проигнорировал открытие изменчивой орбитальной скорости Солнца, он считал фактом совершенно воображаемую идею, что Солнце за год проходит не по эклиптике, а по кругу, наклоненному к ней под небольшим углом. Согласно Симпликию (с. 493), «Евдокс и те, что были до него» пришли к такому выводу, наблюдая, что Солнце в летнее и зимнее солнцестояние не всегда восходит в одной и той же точке горизонта. Возможно, древним наблюдателям не пришло в голову, что и эти грубые определения азимута восходящего Солнца, и наблюдения с гномоном недостаточно точны; без астрономических приборов они заметили, что ни Луна, ни пять планет в своем движении не ограничены эклиптикой (или, как они называли ее, кругом, проходящим через середину зодиака), и почему только одно Солнце не должно смещаться по широте, если все остальные блуждающие звезды делают это настолько явно? Это воображаемое отклонение Солнца от эклиптики часто встречается у античных авторов. Так, Гиппарх, отрицающий существование данного феномена, цитирует следующий фрагмент из «Зеркала» – утерянной книги Евдокса о кругах и созвездиях сферы: «Кажется, что Солнце также совершает возвраты (, солнцестояния) в разные места, но гораздо менее заметно» (комментарий к «Явлениям» Евдокса и Арата) [85] . Каков, по мнению Евдокса, был наклон солнечной орбиты или период обращения узлов, нам неизвестно, и, вероятно, Евдокс имел не слишком точные представления о данном предмете. Плиний указывает наклон в Г, а точку максимальной широты – в 29-м градусе Овна («Естественная история», XXII, 16) [86] . С другой стороны, Теон Смирнский, который излагает вопрос подробнее, утверждает, опираясь на авторитет Адраста (жившего около 100 г. и. э.), что наклон составляет 1/2 ° и что Солнце возвращается на ту же широту через 365 1/8 дня, так что тени гномона становятся одной длины, как он говорит, притом что Солнцу требуются 365 1/4 дня, чтобы вернуться в ту же точку равноденствия или солнцестояния, и 365 1/2 дня, чтобы вернуться на то же расстояние от нас. Из этого следует, что он считал, будто солнечные узлы совершают попятное движение (а не прямое, как полагал Евдокс) и за период 365 1/4 : 1/8 = 2922 года («Астрономия», с. 91, 108, 175, 263, 314). Скиапарелли показывает, что с наклоном 1/2 ° между осями второй и третьей сферы точки солнцестояния должны колебаться в пределах 2°28'. Это, конечно, влияет на продолжительность тропического года, и вполне возможно, что вся теория солнечной широты первоначально возникла из того факта, что тропический год, как оказалось, отличается от сидерического, истинной причиной чего является прецессия равноденствий. Кто первый высказал эту теорию, неизвестно. Несмотря на огромный авторитет Гиппарха и Птолемея, компилятор Марциан Капелла уже в Y веке по-прежнему пребывает в этом необъяснимом заблуждении («О бракосочетании Филологии и Меркурия», кн. VIII, 867) и даже уточняет его, утверждая, что Солнце движется по эклиптике, за исключением Весов, где оно отклоняется на 1/2 °! Вероятно, это значит, что широта Солнца была неразличима для тогдашних инструментов, за исключением периодов нахождения в Весах (и Овне), где она достигает 1/2 °, и вследствие этого предполагалось, что узлы почти совпадают с солнцестояниями. Надо отметить, что всем этим авторам неизвестна прецессия равноденствий.
85
То есть максимальная широта гораздо меньше, чем у Луны. Гиппарх добавляет, что наблюдения с гномоном не показывают широты, а лунные затмения, рассчитанные без учета какой-либо солнечной широты, согласуются с наблюдениями в пределах максимум двух цифр. Кн. I, с. 88—92.
86
Он явно неверно понял источник и посчитал, что диапазон в 1° означает наклон в 1°.
Солнечная теория Евдокса, таким образом, была практически копией его лунной теории. Однако задача, которую он поставил перед собой, стала гораздо труднее, когда он взялся за теории пяти других планет, так как перед ним встала необходимость объяснить стояния и ретроградное движение этих небесных тел. Из четырех сфер, назначенных каждой планете, первая, наружная, производит ежедневное вращение планеты вокруг Земли за двадцать четыре часа; вторая производит движение по зодиаку за период, который для трех внешних планет равен соответственно их сидерическому периоду обращения, тогда как для Меркурия и Венеры он равен году. Из того обстоятельства, что обращение этой второй сферы во всех случаях было единообразным, мы видим, что Евдокс не знал об изменениях орбитальной скорости планет, которая зависит от эксцентриситета каждой орбиты, а также что он полагал, будто точки зодиака, в которых планета оказывается в поочередных противостояниях (или соединениях), идеально равноудалены друг от друга. Также он не считал, что орбиты наклонены к эклиптике, но допускал, что вторая сфера каждой планеты движется по этому кругу, тогда как широты планет, по его понятию, зависят исключительно от их элонгации от Солнца, а не от долготы. Чтобы представить это движение по широте и в то же время неравенство долготы, зависящее от элонгации от Солнца, Евдокс ввел третью и четвертую сферы для каждой планеты. У третьей сферы полюса находятся в двух противоположных точках зодиака (на второй сфере), и она вращается вокруг них за период равный синодическому периоду планеты или интервалу между двумя последовательными противостояниями или соединениями с Солнцем. Эти полюса свои у каждой планеты, но совпадают у Меркурия и Венеры. Направление вращения третьей сферы Симпликий не указывает, а только говорит, что оно совершается с севера на юг и с юга на север, но какое именно из двух направлений мы выбираем, несущественно.