История электротехники
Шрифт:
Достаточно новыми источниками излучения (ИИ) являются источники, основанные на автоэлектронной эмиссии. Если электроны, появившиеся за счет автоэлектронной эмиссии (эмиссии, обеспеченной снижением потенциального барьера катода электрическим полем), направить на люминесцирующее вещество, то можно получить источник излучения со спектром, зависящим от состава люминофора. Одна из проблем, возникающая при создании такого источника, это необходимость иметь у катода напряженность электрического поля 106– 107 В/см. Были предложены и сконструированы экспериментальные образцы ИИ на основе автоэлектронной
В табл. 9.2 приведены некоторые характеристики ИИ.
Тип ИИ | Мощность, Вт | Световой поток, лм | Световая отдача, лм/Вт | Срок службы, ч |
Вакуумные и газонаполненные лампы накаливания общего назначения | 15—1000 | 85—19500 | 5—19,5 | 1000 |
Галогенные лампы накаливания общего назначения | 1000—20 000 | 22 000—440 000 | 22 | 2000—3000 |
Разрядные люминесцентные лампы | 15—80 | 600—5400 | 40—65 | 10 000—15 000 |
Ртутные лампы высокого давления | 80—2000 | 3400—120 000 | 40—60 | 10 000—15 000 |
Ртутные лампы сверхвысокого давления | 120—1000 | 4200—53 000 | 35—53 | 100—800 |
Металлогалогенные лампы | 250—3500 | 19 000—350 000 | 75—1000 | 2000—10 000 |
Натриевые лампы низкого давления | 85—140 | 6000—11000 | 70—80 | 20 000 |
Натриевые лампы высокого давления | 250—400 | 25 000—47 000 | 100—115 | 10 000—15 000 |
Ксеноновые лампы | 2000—50 000 | (35,7:2088)1000 | 18—40 | 100—800 |
9.3. ПРИБОРЫ ДЛЯ ПЕРЕРАСПРЕДЕЛЕНИЯ ЭНЕРГИИ ИЗЛУЧЕНИЯ В ПРОСТРАНСТВЕ
Одной из основных задач техники освещения и облучения является перераспределение энергии излучения источника в заданном направлении пространства. Эту цель выполняет целая группа приборов, называемая световыми приборами (СП). Они служат для концентрации потока излучения в объеме и на поверхности. С их помощью можно изменять физические свойства излучения, например спектральный состав или поляризацию. По своему функциональному назначению и конструктивному исполнению СП делятся на две большие группы: светооптические приборы и светильники. Приборы первой группы имеют светооптическую систему, включающую источник излучения и оптическую систему (отражающую, преломляющую). Они перераспределяют и концентрируют поток в пределах небольших телесных углов. К ним относятся прожекторы (военные, авиационные посадочные, киносъемочные, театральные, общего назначения для освещения промышленных и общественных объектов), фары (автомобильные, самолетные, транспортные и т.д.), маяки (морские, авиационные и т.д.), светосигнальные приборы (светофоры), различные проекционные аппараты. Светильники — приборы, включающие источник излучения и осветительную арматуру. Они предназначены для перераспределения потока излучения внутри значительных телесных углов и освещения объектов, находящихся на небольших расстояниях от прибора. К ним относятся светильники для освещения помещений (производственных, общественных, жилых, салонов транспортных средств и т.д.), открытых пространств (улиц, дорог, карьеров, туннелей, архитектурных сооружений и т.д.), объектов, находящихся под водой, под землей, в космосе.
В различных светотехнических установках России в 90-х годах XX в. использовалось более 1,5 млрд. различных СП. Отечественной светотехнической промышленностью выпускалось ежегодно более 85 млн. СП, номенклатура которых составляла около 4 тыс. исполнений.
Первые светооптические приборы прожекторного класса появились в XVIII в. В 1763 г. в Англии для использования в морских маяках были созданы прожекторы с пластинчатыми отражателями. Несколько позже (1779 г.) в России также был построен первый прожектор. Его создал выдающийся русский изобретатель И.П. Кулибин (1735–1818 гг.). Этот прожектор имел пластинчатый отражатель, в котором зеркальные пластины выложены по параболоидному остову.
В конце XVIII в. во Франции стали применять уже сплошные металлические отражатели параболоидной формы. Дальнейшее совершенствование светооптической системы прожекторов связано с работами французского ученого О. Френеля (1788–1827 гг.). Для концентрации светового потока он предложил использовать ступенчатую линзу, которая в дальнейшем названа его именем. В настоящее время линзы О. Френеля являются одним из основных видов оптических систем СП прожекторного и проекторного типов. Дальнейшее развитие светооптических приборов было связано с военной техникой. В 1875 г. французский военный инженер полковник М. Манжен предложил использовать в военных прожекторах стеклянные отражатели. Они имели лицевую и тыльную концентрические сфероидные поверхности с различными радиусами кривизны и по оптическому действию были аналогичны стеклянным параболоидным отражателям. Последние в то время не могли изготавливаться с достаточной оптической точностью.
Большой вклад в развитие мирового прожекторостроения внес русский ученый В.Н. Чиколев (1845–1898 гг.). В статье, опубликованной в 1877 г., он первым высказал мысль о разработке полевых военных прожекторов. Он же в 1871 г. изобрел дифференциальный регулятор для дуговых ламп, которые применялись в прожекторах. В.Н. Чиколев предложил метод испытания на оптическую точность стеклянных параболоидных отражателей при помощи фотографирования сетки. Этот метод получил распространение во всем мире.
В.Н. Чиколев был не только практиком, но и теоретиком. Он сформулировал основные положения метода расчета светооптических приборов, названного методом элементарных отображений. В начале XX в. этот метод был признан во всем мире, а идеи русского ученого позднее были развиты французским исследователем К. Рибьером и американским Ф. Бенфордом.
Первая мировая война поставила много новых вопросов перед разработчиками СП. В то же время Октябрьская революция в России всколыхнула творческую активность народа. Начинает развиваться электроламповая промышленность, принят план ГОЭЛРО, происходит становление светотехнической подотрасли. Стране нужны новые СП с новыми источниками света и для различных областей применения.
Основные направления научно-исследовательских работ в 20–40-е годы были связаны с разработкой методов расчета СП в основном для освещения промышленных предприятий. Русскими учеными Н.Г. Болдыревым и Н.Н. Ермолинским были разработаны способы расчета СП с лампами накаливания (ЛН) с диффузными отражателями и рассеивателями. Для расчета СП с зеркальными отражателями Н.Г. Болдыревым и В.Д. Комиссаровым было найдено общее дифференциальное уравнение зеркальной поверхности. Оно устанавливало зависимость между текущим радиус-вектором зеркальной поверхности и углами, координирующими падающие и отраженные лучи. Над разработкой методов расчета СП с ЛН и призматических СП работала целая плеяда ученых и инженеров, среди них А.А. Гершун, Б.Ф. Федоров и др.
Параллельно с теоретическими исследованиями в 20–40-е годы шло становление и быстрое развитие промышленности по изготовлению СП. Большая заслуга в этом принадлежит Л.Д. Белькинду (1897–1969 гг.). В 1925–1926 гг. им совместно с П.М. Тиходеевым и Б.Ф. Федоровым разрабатываются конструкции первой серии промышленных светильников. С 1929 г. они начали серийно выпускаться. В 1934 г. вышла книга Л.Д. Белькинда «Электрические осветительные приборы ближнего действия (электрические светильники)».
В предвоенные годы разработка новой военной техники потребовала решения новых теоретических проблем в различных областях инженерных дисциплин, в том числе и в светотехнике. Необходимо было создавать светооптические приборы для сигнализации, авиационной и аэродромной техники, прожекторов дальнего действия, позволяющих визуально обнаруживать удаленные объекты, при различных метеорологических условиях. Для создания больших уровней освещенностей на больших расстояниях необходим был источник излучения повышенной яркости. В качестве такого источника стали использовать угольную дугу высокой интенсивности. Фундаментальные работы по изучению процессов горения дуг высокой интенсивности в 30–40-е годы были проведены Н.А. Карякиным (1902–1985 гг.) в ВЭИ. Результаты экспериментальных исследований легли в основу созданной Н.А. Карякиным теории дуги высокой интенсивности, которая была защищена им как докторская диссертация в 1941 г. Н.А. Карякин написал монографию «Угольная дуга высокой интенсивности», которая и до настоящего времени не потеряла своей ценности. Однако основная творческая деятельность Н.А. Карякина связана была со светооптическими приборами. Блестящий математик с инженерной интуицией, он разработал теорию энергетического расчета этих приборов, которая известна в мире и актуальна до настоящего времени. Сам Н.А. Карякин утверждал, что его работа — это развитие метода элементарных отображений В.Н. Чиколева. Н.А. Карякин построил физически и математически стройную теорию элементарных отображений, позволяющую рассчитать как форму и габариты светооптического прибора, так и структуру и энергетику создаваемого им пучка излучения. Его теория позволяет учитывать как аберрационные, так и дисперсионные явления. Разработка этой теории приходится на 40–50-е годы, когда отсутствовали ЭВМ. Она являлась единственно возможным путем энергетического расчета СП и отличалась аналитической простотой и физической наглядностью. Эта теория прошла проверку в трудных условиях военного времени 1941–1945 гг. В прожекторной лаборатории ВЭИ, руководимой Н.А. Карякиным, были проведены расчеты зенитных прожекторов с угольной дугой высокой интенсивности. Он участвовал в организации производства этих прожекторов, которые превосходили по дальности действия лучшие мировые образцы. За эти работы Н.А. Карякин был удостоен Государственной премии СССР и награжден орденом Ленина.
Н.А. Карякин является одним из основоположников отечественной авиационной светотехники. В 30–40-х годах им в соавторстве с В.В. Кузнецовым и Ю.В. Фридом была опубликована серия статей под общим названием «Световые авиамаяки», в которой изложены методы расчета СП для авиационных трасс и взлетно-посадочных полос. В этот же период он переводит и дополняет труды французского ученого А. Рокара, посвященные вопросам влияния атмосферы на формирование структуры светового поля прожектора и видимости удаленных объектов в прожекторном пучке.