История и антиистория. Критика «новой хронологии» академика А.Т. Фоменко
Шрифт:
Чтобы это проверить, опишем, как вычисляется Л(X, Y). Идея получения этого коэффициента состоит в сравнении некоторых объемов в n-мерном пространстве, где размерность пространства n совпадает с наибольшей из длин рядов Xi и Yi. Данным рядам сопоставляются соответственно две точки n– мерного пространства X (X1, X2, … , Xn)
Сразу же обращает на себя внимание вопрос — как быть в случае, если число максимумов в анализируемых хрониках различно? Корректная статистическая процедура требовала бы, чтобы сравнивались ряды с наименьшей из двух длин, т.е. из большего ряда выбирались бы последовательности чисел с длиной равной длине меньшего ряда, затем для каждой пары вычислялся бы коэффициент корреляции и делались бы соответствующие выводы о возможности линейной связи. Однако, автор идет по совершенно иному пути (ничем это не мотивируя) — выбирает наибольшую длину и предлагает считать в меньшем из рядов некоторые максимумы кратными, т.е. слившимися в одну точку, а соответствующие недостающие координаты Xi — равными 0. Ясно, что никакого исторического смысла такой кратный максимум не имеет, что же касается математической стороны, то очевидна неоднозначность процедуры выбора кратных максимумов, которая существенно влияет на подсчет Л(X, Y), о чем мы еще скажем ниже.
Таким образом, координаты точек X и Y являются целыми положительными числами или нулями, и при этом удовлетворяют условию
где А — полная длина хронологического отрезка, который описывают хроники. Напомним, что по условию, обе хроники описывают одинаковые по продолжительности промежутки времени. Поскольку числа Xi являются расстояниями между соседними максимумами хроники, их полная сумма и должна равняться полной временной протяженности хроники, т.е. А. То же справедливо и для второй хроники Yi.
Множество точек с целочисленными неотрицательными координатами, удовлетворяющими условию (4), автор обозначает Ш и придает ему смысл полного набора всех возможных хроник, которые описывают хронологический промежуток длины A. Каждой точке множества Ш соответствует некоторый набор максимумов, а ему, в свою очередь, некоторая «виртуальная» хроника, что и позволяет автору придать вводимому ниже коэффициенту вероятностную интерпретацию.
Коэффициент Л(X, Y) равен отношению количества точек из множества Ш, которые лежат к точке X ближе чем точка Y (в смысле декартового расстояния (3)), к полному числу точек множества Ш. Последнее число, как только что говорилось, по мысли автора — это полное число возможных хроник на данном отрезке длиной A. Величина Л(X, Y) называется «вероятностью случайного совпадения лет» (ВССЛ). Таким образом, если, например, Л(X, Y) = 10– 6, то это должно означать, что из миллиона наугад взятых хроник, описывающих промежуток времени данной длины, только одна находится к хронике X также «близко», как и хроника Y. Отсюда легко сделать вывод — раз чрезвычайно мала вероятность того, что столь близкое совпадение хроник X и Y случайно, то они обязаны описывать одни и те же события, что и требуется доказать автору.
Неправда ли, все это звучит весьма убедительно? И, конечно, нельзя упрекнуть читателей, которые, не проникая глубже в методику Фоменко, остаются здесь вполне убежденными в достоверности оценок, получаемых с помощью Л(X, Y). И, однако, это не так.
Начнем, сперва, с возражений чисто теоретического характера. Замечательным свойством меры Л(X, Y) является ее некоммутативность, поскольку в общем случае
Л(X, Y) /= Л(Y, X)
Чтобы в этом убедиться, достаточно простейшего примера: А=2, n=2, X(2, 0), Y(1, 1), тогда Л(X, Y)=2/3, а Л(X, Y)=1. Некоммутативность ставит под сомнение саму возможность сделать из этого коэффициента какой-нибудь вывод, ведь если хроника X близка к Y по мере Л(X, Y), то вовсе необязательно, что Y также близка к X по мере Л(X, Y). Очевидно, что автору необходимо как минимум каждый раз, сравнивая хроники, определять обе меры и предъявлять их читателю, а если они совпадают, специально оговаривать этот случай. К сожалению, мы не найдем этого в цитируемой книге. Только в 3-ем ее издании (1999 г.) мы видим, что автор заменяет Л(X, Y) на среднее значение Л(X, Y) и Л(Y, X), с помощью этого добиваясь коммутации. Однако, замечательно, что при этом автором не исправлено ни одно из посчитанных еще в 1-м издании книги конкретных значений коэффициента, что вызывает у читателя законные вопросы.
Вторым важным замечанием является отсутствие связи между выводами, получаемыми с помощью Л(X, Y), и выводами, которые дают стандартные коэффициенты линейной корреляции и регрессии. Убедимся в этом на конкретном примере. Здесь и далее в примерах мы будем полагать значения А=450 лет, и n=15 — эти числа, с одной стороны, удобны для вычислений, а с другой, почти не отличаются от параметров ключевой «совпадающей» пары «Новой хронологии»: Тит Ливий — Грегоровиус (см. ниже). Рассмотрим следующие два ряда по 15 чисел с суммой 450 (они были получены, да поверит нам читатель, не подбором, а наугад, с использованием датчика случайных чисел [250] )
250
Все вычисления нашей статьи проводятся с помощью стандартных функций программы Microsoft Excel 97.
X (25, 24, 24, 22, 28, 23, 32, 33, 37, 25, 32, 39, 32, 33, 41)
Y (36, 28, 23, 38, 20, 35, 31, 26, 28, 31, 30, 27, 39, 22, 36)
Даже при тщательном взгляде на ряды, увидеть в них какую-либо корреляцию, напоминающую связь (1), сложно. Об этом же свидетельствует и коэффициент линейной корреляции, дающий малое значение, равное
r = -0.101
При этом, чтобы сделать вывод о существовании связи хотя бы с 50% вероятностью (см. (2')), требовалось бы значение r по модулю превосходящее 0.6/ 15 = 0.185, достоверная же оценка существования корреляции (на уровне 99%), требует значений коэффициента |r| > 3 / 15 = 0.77.
Вычисление регрессионной связи рядов X и Y иллюстрирует следующий рисунок. На нем отсутствует какое-либо выделенное направление в распределении точек, соответствовавшее бы их линейной связи, что и доказывают следующие статистические показатели. Прямая, подобранная по методу наименьших квадратов (см. рис.), обладает коэффициентом регрессии
k = -0,098.
(в случае связи (1) этот коэффициент с необходимостью равнялся бы единице). При этом средняя ошибка коэффициента регрессии = 0.268, т.е. более чем в два раза превосходит абсолютное значение самого коэффициента, что не позволяет говорить о какой-либо значимости линейной связи.