Чтение онлайн

на главную

Жанры

Шрифт:

Закон Планка

Теоретическая ситуация, как описывают, была следующей. Когда в воскресенье 7 октября 1900 г. X. Рубенс со своей женой посетил Планков, он рассказал Планку об измерениях на длинах волн до 50 мкм, которые он произвел вместе с Ф. Курлбаумом в Берлинском институте. Эти измерения показали определенное отклонение от предположений согласно закону Вина, но были в согласии с новой формулой Рэлея. Публичное представление этих результатов должно было состояться 19 октября на сессии Германского Физического общества. Перед этим заседанием Планк старался модифицировать свое выражение для энтропии осцилляторов так, чтобы оно согласовывалось с новыми

результатами, все еще придерживаясь основ термодинамических рассмотрений, он вывел закон распределения, который сегодня носит его имя. Той же ночью он послал открытку Рубенсу с новой формулой, которая была получена на следующее утро. Спустя день или два Рубенс пришел к Планку и показал ему экспериментальные результаты, которые прекрасно совпадали с новой формулой. На собрании Германского Физического общества 19 октября Курлбаум представил эксперименты, выполненные с Рубенсом, и в последовавшей оживленной дискуссии, Планк представил свою новую формулу в комментарии, озаглавленном «Об улучшении закона излучения Вина». «В тот же день, в который я сформулировал этот закон, я поставил перед собой задачу придать ему правильный физический смысл», — говорил Планк позднее, и после нескольких недель самой напряженной работы в его жизни, он 14 декабря снова на заседании Германского Физического общества смог объяснить физические гипотезы, которые поддерживали этот закон.

В своей лекции Планк утверждал, что согласно некоторым довольно сложным вычислениям, которые он выполнил, можно найти способ исправить парадоксальные заключения, полученные Рэлеем, и избежать опасности ультрафиолетовой катастрофы, если принять постулат, что энергия E электромагнитных волн (включая видимый свет) может существовать только в форме некоторого пакета с энергией, содержащейся в каждом пакете, прямо пропорциональной соответствующей частоте f:

«...мы рассматриваем — и это наиболее важная часть всех вычислений — Е состоит из совершенно определенного числа конечных равных частей, которые получаются путем использования для этой цели естественной константы h... Эта константа при умножении ее на частоту f резонаторов дает элемент энергии е... а путем деления Е на элемент энергии е мы получаем... число элементов энергии, которые распределены среди N резонаторов».

Эта гипотеза, известная как квантовая теория, предполагает, что энергия может испускаться только дискретными величинами, или пакетами, а не непрерывно изменяемыми величинами. Минимальная энергия, которую осциллятор может испустить на частоте f, является произведением частоты на универсальную константу, которую Планк обозначил h и которая ныне известна как константа Планка (постоянная действия).

Планк получил эту интерпретацию закона черного тела до середины ноября 1900 г., но представил свои результаты Германскому Физическому Обществу в Берлине только 14 декабря. Великий математик и физик А. Зоммерфельд (1868—1951) назвал этот день «днем рождения квантовой теории». Он, в частности, ссылался на тот факт, что Планк рассматривал «наиболее существенным пунктом» своей теории гипотезу, что энергия распределяется среди резонаторов полости только целыми кратными элементами конечной энергии.

Спустя более чем 30 лет в письме своему другу физику, специалисту в оптике и спектроскопии, Р. В. Буду (1868-1955) от 7 октября 1931 г., Планк оправдывался:

«короче говоря, я могу охарактеризовать всю процедуру как акт отчаяния, т.к. по своей природе я миролюбив и не склонен к сомнительным авантюрам. Однако я уже бился 6 лет (с 1894 г.) над проблемой равновесия между излучением и веществом без каких бы то ни было успехов. Я сознавал, что эта проблема имела фундаментальную важность для физики, и я узнал формулу, описывающую распределение энергии в нормальном спектре (т.е. спектр черного тела); следовательно, требовалось найти любой ценой теоретическую интерпретацию, однако эта цена могла быть высокой».

Парадоксально, что революционная гипотеза Планка не была немедленно принята, но ученые того времени не понимали, что родилась новая физика. Сам Планк не признавал революции, которую он вызвал, считая, что квантование энергии не более чем простая математическая модификация, полезная для вычислений. Он не думал, что энергия действительно концентрируется в дискретных квантах. Будучи глубоко консервативным человеком, он в течение ряда лет ограничивал свои размышления рассмотрением своей теории квантования энергии просто как удобную гипотезу, которая позволяет применить статистику Больцмана к проблеме излучения.

Точно так же физики первых лет XX в. использовали формулу черного тела как эмпирическую, и сам Планк старался ограничить концепцию квантования и произвел две последовательные модификации своей теории, в которых сумел получить ту же формулу без необходимости предположения, что процессы поглощения включают обмен энергии квантами, т.е. кванты энергии (1914 г.). Научному сообществу потребовалось несколько лет, чтобы осознать его вклад и присудить ему Нобелевскую премию по физике лишь в 1918 г. «в признание заслуг, которые он оказал развитию Физики своим открытием квантов энергии».

Среди тех первых, которые указали, что что-то не вполне правильно, был Рэлей, который в 1905 г. снова обратился к своей формуле 1900 г., отмечая, что формула Планка сводится к ней в пределе низких частот, и заключал:

«Критическое сравнение двух процессов [т.е. его собственного и Планка] представляет интерес, но не следуя за соображениями Планка, я не могу принять их. Как применяемая ко всем длинам волн, его формула могла бы иметь большее значение, если бы была удовлетворительно установлена. С другой стороны, соображения, которыми я руководствовался [мое уравнение] очень просты, и эта формула, как казалось мне, является необходимым следствием закона равновесности, как он был утвержден Больцманом и Максвеллом. Мне трудно понять, как еще один какой-нибудь процесс, также основанный на идеях Больцмана, может привести к другому результату».

Таким образом, Рэлей указал факт появления новой концепции, обычно называемой «кризисом классической физики».

В это самое время гениальные соображения неизвестного служащего Патентного бюро в г. Берне (Швейцария) укрепили теоретические основы понимания явлений испускания и поглощения света. Этим неведомым служащим был Альберт Эйнштейн. Как мы увидим, Эйнштейн полностью принял концепцию квантования и предположил, что излучение ведет себя так, как если бы оно состояло из квантов энергии, что проявляется не только в процессах испускания и поглощения, но что кванты существуют независимо в виде частиц в вакууме. Однако прежде чем обсуждать эти фундаментальные концепции, нам нужно описать еще одну важную революцию, связанную с открытием строения атома и ее роль в излучении света.

ГЛАВА 4

ATOM РЕЗЕРФОРДА—БОРА

Концепция атома как сложной системы, содержащей внутри себя как отрицательные заряды (электроны), так и положительные (необходимые для нейтрализации электронов и делающие атом электрически нейтральным), была введена, как мы видим, между 19 и 20 столетиями. В 1911 г. благодаря фундаментальным экспериментам, выполненными Резерфордом, была разработана модель, которой мы, с некоторыми модификациями, пользуемся и поныне.

Резерфорд и планетарный атом

Эрнст Резерфорд (1871—1937) родился в маленьком городке Южного острова Новой Зеландии в семье выходца из Шотландии. Его мать была школьной учительницей и великолепно играла на рояле, что было необычным в Новой Зеландии того времени. Его отец, энергичный и умелый фермер, организовал выгодный бизнес по производству веревок и канатов. Многочисленная семья молодого Эрнста жила вдали от больших городов на семейной ферме.

Поделиться:
Популярные книги

Сумеречный стрелок 8

Карелин Сергей Витальевич
8. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Сумеречный стрелок 8

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Сыночек в награду. Подари мне любовь

Лесневская Вероника
1. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сыночек в награду. Подари мне любовь

Восход. Солнцев. Книга X

Скабер Артемий
10. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга X

Афганский рубеж

Дорин Михаил
1. Рубеж
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Афганский рубеж

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

«Три звезды» миллиардера. Отель для новобрачных

Тоцка Тала
2. Три звезды
Любовные романы:
современные любовные романы
7.50
рейтинг книги
«Три звезды» миллиардера. Отель для новобрачных

Виконт. Книга 4. Колонист

Юллем Евгений
Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.50
рейтинг книги
Виконт. Книга 4. Колонист

(Не)нужная жена дракона

Углицкая Алина
5. Хроники Драконьей империи
Любовные романы:
любовно-фантастические романы
6.89
рейтинг книги
(Не)нужная жена дракона

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7

"Колхоз: Назад в СССР". Компиляция. Книги 1-9

Барчук Павел
Колхоз!
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Колхоз: Назад в СССР. Компиляция. Книги 1-9