Чтение онлайн

на главную

Жанры

Шрифт:

А как вы себе представляете, насколько увеличивается объем воды, когда она переходит в газообразное состояние? Взгляните на этот куб (показывает кубический фут), а вот рядом с ним кубический дюйм [ 22 ] .

Форма у них одинаковая, и различаются они только по объему. Так вот, одного кубического дюйма воды оказывается достаточно для того, чтобы расшириться до целого кубического фута пара. И наоборот, от действия холода это большое количество пара сожмется до такого маленького количества воды... (В этот момент лопается одна из чугунных бутылок.)

22

В футе двенадцать дюймов. 1 фут равен 30,4 см.
– Прим. ред.

Ага! Вот взорвалась одна из наших бутылок, - смотрите, вдоль нее идет трещина шириной в восьмую дюйма. (Тут разрывается другая бутылка, и охлаждающая смесь разлетается во все стороны.) Вот и вторая бутылка лопнула; ее разорвало льдом, хотя чугунные стенки были почти в полдюйма толщиной. Такого рода изменения происходят с водой всегда; не думайте, что их обязательно надо вызывать искусственным путем. Это только сейчас нам пришлось воспользоваться такими средствами, чтобы ненадолго устроить около этих бутылок зиму в малом масштабе вместо настоящей длинной и суровой зимы. Но если вы побываете в Канаде или на Крайнем Севере, вы убедитесь, что там наружная температура достаточна, чтобы произвести на воду тот же эффект, какого мы здесь добивались нашей охлаждающей смесью.

Однако вернемся к нашим рассуждениям. Стало быть, никакие изменения, происходящие с водой, не смогут теперь ввести нас в заблуждение. Вода - везде одна и та же вода, получена ли она из океана или из пламени свечи. Где же, в таком случае, находится та вода, которую мы получаем из свечи? Чтобы ответить на этот вопрос, я должен буду немного забежать вперед. Совершенно очевидно, что эта вода частично появляется из свечи, - но была ли она в свече прежде? Нет, воды не было ни в свече, ни в окружающем воздухе, необходимом для горения свечи. Вода возникает при их взаимодействии: одна составная часть ее берется из свечи, другая - из воздуха. Именно это мы должны теперь проследить, чтобы до конца понять, каковы химические процессы, происходящие в свече, когда она горит перед нами на столе.

Как же мы до этого доберемся? Мне-то известно множество путей, но я хочу, чтобы вы додумались сами, размышляя над тем, что я вам уже сообщил.

Думаю, что кое-что вы сможете сообразить вот как. В начале сегодняшней лекции мы имели дело с неким веществом, своеобразную реакцию которого с водой открыл сэр Гэмфри Дэви. [ 23 ]

Я напомню вам эту реакцию, повторив еще раз опыт с калием. С этим веществом надо обращаться очень осторожно: ведь если у нас на кусок калия попадет хоть капля воды, это место сейчас же загорится, а от него, при условии свободного доступа воздуха, живо загорелся бы и весь кусок. Так вот, калий - это металл с прекрасным ярким блеском, быстро изменяющийся на воздухе и, как вы знаете, в воде. Я опять кладу кусочек калия на воду, - видите, как он чудесно горит, образуя как бы плавучий светильник и используя для горения вместо воздуха воду.

23

Калий, металлическая основа поташа, был открыт в 1807 г. Гэмфри Дэви, которому удалось выделить его из поташа при помощи вольтовой батареи. Из-за сильного сродства к кислороду калий разлагает воду с выделением водорода, который воспламеняется и горит с выделением тепла.
– Прим. В. Крукса

Положим теперь в воду немного железных опилок или стружек. Мы обнаружим, что они также претерпевают изменения. Меняются они не так сильно, как этот калий, но до некоторой степени схожим образом: они ржавеют и воздействуют на воду, хотя и не столь интенсивно, как этот чудесный металл, но, в общем, их реакция с водой носит тот же характер, что и реакция калия. Сопоставьте мысленно эти различные факты. Вот еще один металл - цинк; вы имели случай убедиться в его способности гореть, когда я вам показывал, что при его сгорании получается твердое вещество. Я полагаю, что если сейчас взять узкую стружку цинка и подержать ее над пламенем свечи, то вы увидите явление, так сказать, промежуточное между горением калия на воде и реакцией железа - произойдет горение особого рода. Вот цинк сгорел, оставив белую золу. Итак, мы видим, что металлы горят и действуют на воду.

Шаг за шагом мы научились управлять действием этих различных веществ и заставлять их рассказывать нам о себе. Начнем с железа. У всех химических реакций есть общая черта: они от нагревания усиливаются. Поэтому нам часто приходится применять тепло, если надо детально и внимательно исследовать взаимодействие тел. Вам, надо полагать, уже известно, что железные опилки прекрасно горят в воздухе, но я все же покажу это вам сейчас на опыте, чтобы вы твердо усвоили то, что я вам собираюсь рассказать о действии железа на воду. Возьмем горелку и сделаем ее пламя полым - вы уже знаете, для чего: я хочу подвести воздух к пламени и изнутри. Затем возьмем щепотку железных опилок и будем бросать их в пламя. Видите, как они хорошо горят. Это и есть химическая реакция, которая происходит, когда мы поджигаем эти частицы железа.

Теперь разберем эти различные виды взаимодействия и выясним, что станет делать железо, когда оно встретится с водой. Все это оно само нам расскажет, и притом так занимательно и систематично, что, я уверен, вы получите большое удовольствие.

Вот тут у меня печь с проходящей сквозь нее железной трубкой вроде ружейного ствола. Эту трубку я набил блестящими железными стружками и поместил ее над огнем, чтобы она раскалилась докрасна. Сквозь эту трубку мы можем пропускать либо воздух, чтобы он приходил в соприкосновение с железом, либо пар из этого маленького кипятильника, присоединив его к концу трубки.

Вот кран, который закрывает водяному пару доступ в трубку, пока нам не понадобится его туда впустить.

В этих сосудах - вода, которую я подсинил, чтобы вам виднее было, что произойдет.

Вы уже прекрасно знаете, что если из этой трубки будет выходить именно водяной пар, то он при пропускании через воду обязательно сгустится; ведь вы же убедились, что пар, будучи охлажден, не может остаться в газообразном состоянии; в нашем опыте с этим жестяным цилиндром вы видели, как пар сжался в небольшой объем, и в результате оказался исковерканным цилиндр, в котором находился пар. Таким образом, если бы я стал пропускать пар сквозь эту трубку, и притом она была бы холодная, пар сгустился бы в воду; вот почему трубку раскаляют для проведения того опыта, который я сейчас собираюсь показать вам. Впускать пар в трубку я буду небольшими порциями, и когда вы увидите его выходящим из другого конца трубки, вы сможете сами судить, продолжает ли он оставаться паром.

Итак, пар обязательно превращается в воду, если понижать его температуру. Но этот газ, который поступает из раскаленной трубки и температуру которого я понизил, пропуская его сквозь воду, собирается в банке и не превращается в воду. Подвергну этот газ другому испытанию. (Банку приходится держать опрокинутой, иначе наше вещество из нее улетучится.)

Я подношу огонек к отверстию банки, газ с легким шумом загорается. Отсюда понятно, что это не водяной пар - ведь пар тушит огонь, а гореть не может, - здесь же вы только что видели, что содержимое банки горело. Добыть это вещество можно как из воды, получающейся в пламени свечи, так и из воды любого другого происхождения. Когда этот газ получается в результате действия железа на водяной пар, железо приходит в состояние, весьма сходное с тем, в каком оказались эти железные опилки, когда они сгорели. Эта реакция делает железо более тяжелым, чем оно было раньше. В том случае, если железо, оставаясь в трубке, подвергается накаливанию и снова остывает без доступа воздуха или воды, его масса не меняется. Но когда сквозь эти железные стружки мы пропустили струю водяного пара, железо оказалось тяжелее, чем прежде: оно присоединило к себе нечто из пара и пропустило мимо себя нечто другое, что мы и видим вот в этой банке.

А теперь, раз у нас есть еще полная банка этого газа, я покажу вам очень интересную вещь. Газ этот - горючий, так что я мог бы сразу поджечь содержимое этой банки и доказать вам его горючесть; но я намерен показать вам и еще кое-что, если мне удастся. Дело в том, что полученное нами вещество очень легкое. Водяному пару свойственно конденсироваться, а это вещество не конденсируется, и ему свойственно уноситься в воздух. Возьмем другую банку, пустую, т. е. в которой нет ничего, кроме воздуха; исследуя ее содержимое зажженной лучинкой, можно убедиться, что в ней действительно ничего другого нет.

Поделиться:
Популярные книги

Идущий в тени 5

Амврелий Марк
5. Идущий в тени
Фантастика:
фэнтези
рпг
5.50
рейтинг книги
Идущий в тени 5

Кодекс Охотника. Книга VIII

Винокуров Юрий
8. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VIII

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2

Кровь на клинке

Трофимов Ерофей
3. Шатун
Фантастика:
боевая фантастика
попаданцы
альтернативная история
6.40
рейтинг книги
Кровь на клинке

Последний попаданец 5

Зубов Константин
5. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 5

Приручитель женщин-монстров. Том 1

Дорничев Дмитрий
1. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 1

Кодекс Охотника. Книга XXV

Винокуров Юрий
25. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга XXV

Мимик нового Мира 8

Северный Лис
7. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 8

Младший сын князя

Ткачев Андрей Сергеевич
1. Аналитик
Фантастика:
фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Младший сын князя

Возвращение

Жгулёв Пётр Николаевич
5. Real-Rpg
Фантастика:
боевая фантастика
рпг
альтернативная история
6.80
рейтинг книги
Возвращение

Эйгор. В потёмках

Кронос Александр
1. Эйгор
Фантастика:
боевая фантастика
7.00
рейтинг книги
Эйгор. В потёмках

На границе империй. Том 4

INDIGO
4. Фортуна дама переменчивая
Фантастика:
космическая фантастика
6.00
рейтинг книги
На границе империй. Том 4

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3