История всего
Шрифт:
Простите, что-что? Как вы сказал!? Космологическая постоянная, которая выравнивает пространство до плоского состояния? Вы намекаете, что мы все, как Королева из «Алисы в Зазеркалье», верим «в десяток невозможностей до завтрака» [22] ? Однако при более зрелом размышлении вы убедитесь в том, что, если, как оказалось, в пустом пространстве все же имеется энергия (!), значит, эту энергию можно выразить в виде массы согласно знаменитому уравнению Эйнштейна, где E = mc2. При наличии энергии E вы можете вывести соответствующее ей значение массы m, равное E, разделенной на c2. Тогда вы получите суммарную плотность, составленную из двух отдельных величин: плотности вещества и плотности
22
Льюис Кэрролл, «Алиса в Зазеркалье», глава 5 «Вода и вязанье».
И вот эту самую новую суммарную плотность и следует сравнивать с критической. Если их значения равны, значит, мы имеем дело с плоским пространством. Это соответствует прогнозам инфляционной модели о плоском пространстве, которой совершенно все равно, откуда берется значение суммарной фактической плотности вещества во Вселенной: составляйте из чего хотите — вещества, энергии или и того и другого, главное — конечный результат.
Важнейшие свидетельства ненулевой космологической постоянной, а значит, и существования темной энергии были получены в процессе астрономических наблюдений за особым типом сверхновых звезд, которые, взрываясь с невероятной силой, гибнут в сопровождении ярчайшей вспышки света. Такие сверхновые звезды называются сверхновыми типа Ia [23] и отличаются от других типов, которые появляются после того, как ядра огромных звезд испытывают коллапс в конце своего жизненного цикла, исчерпав все свои возможности по производству энергии за счет термоядерного синтеза. В отличие от них сверхновые типа Ia обязаны своим происхождением так называемым белым карликам, принадлежащим к бинарным звездным системам. Две звезды, которым довелось образоваться рядом друг с другом, следуют своим жизненным циклам, одновременно вращаясь вокруг общего для них центра массы. Если одна из двух таких звезд обладает большей массой, ее жизненный цикл быстрее подойдет к концу, в большинстве случаев такие звезды теряют внешнюю газовую оболочку, обнажая перед космосом свое ядро в виде съежившегося, вырожденного белого карлика — объекта размером не больше Земли, но по массе сравнимого с Солнцем. Физики называют вещество в белых карликах вырожденным, потому что его плотность настолько высока (она превышает плотность железа или золота более чем в сотню тысяч раз), что законы квантовой механики преобладают над веществом в общем объеме, не давая ему схлопываться под воздействием невообразимо мощной гравитации, направленной на самого себя.
23
От англ. Туре Ia или SN Ia (где SN = Supernova).
Белый карлик на взаимной орбите со стареющей звездой-компаньоном притягивает к себе газообразный материал, который она более не в силах удержать. Такое вещество, как правило, все еще достаточно богато водородом, и оно скапливается на поверхности белого карлика, становясь все более плотным и горячим. В конце концов, когда температура достигает 10 миллионов градусов, вся звезда целиком вспыхивает в термоядерном взрыве. Словно водородная бомба, но в миллиарды раз мощнее, такой взрыв разрывает всего белого карлика на части… и становится сверхновой звездой типа Ia.
Такие сверхновые типа Ia особенно пригодились астрономам за счет двух своих отдельных свойств. Во-первых, они являются источником самых ярких взрывов сверхновых звезд во Вселенной — их видно миллиарды световых лет спустя. Во-вторых, природа установила ограничение по массе для любого белого карлика: она не может превышать величину массы Солнца, умноженную примерно на 1,4. Вещество может накапливаться на поверхности белого карлика только до тех пор, пока его новая суммарная масса не достигнет значения примерно 1,4 массы Солнца. Как только это случится, термоядерные реакции разрывают белого карлика на части — взрыв всегда происходит с объектами одной и той же массы (ибо превысить ее невозможно) и одного и того же состава, раскиданными по всей Вселенной. Получается, что при рано или поздно наступающем взрыве такие сверхновые белые карлики достигают одного и того же максимального значения энергии взрыва, а их яростное сияние потухает с примерно одинаковой скоростью после достижения своего пика.
Эти свойства позволяют астрономам использовать сверхновые типа Ia в качестве очень ярких и легко различимых «стандартных свечей» — объектов упорядоченного измерения, которые достигают равнозначного максимального выхода энергии, где бы они ни находились. Конечно, расстояние от наблюдателя до такой сверхновой звезды играет роль. Две звезды типа Ia в двух разных далеких галактиках будут излучать свет одинаковой степени яркости только в том случае,
Когда астрономы научились распознавать сверхновые звезды типа Ia на основании подробного анализа светового спектра каждого из таких объектов, у них в руках оказался золотой ключик от двери, за которой прятался ответ на вопрос: как точно измерить расстояние до небесных тел? Измерив (другими способами) расстояние до нескольких ближайших сверхновых типа Ia, ученые смогли вычислить гораздо более существенные расстояния до других сверхновых типа Ia, просто сравнив светимость относительно близких и далеких объектов.
В 1990-е годы две команды специалистов по сверхновым звездам — одна из Гарварда, а другая — из Калифорнийского университета в Беркли — усовершенствовали эту методику, найдя способ компенсировать в своих расчетах небольшие, но реальные различия между сверхновыми типа Ia, которые можно отследить по их спектрам. Чтобы воспользоваться новеньким блестящим ключом от расстояний до самых далеких сверхновых звезд, исследователям был нужен телескоп, способный наблюдать за далекими галактиками и записывать свои наблюдения с ювелирной точностью. Они обратились к телескопу Хаббла, который в 1993 году получил новое основное зеркало (старое было изготовлено с погрешностью). С помощью наземных телескопов эксперты по сверхновым звездам обнаружили десятки объектов типа Ia в галактиках в миллиардах световых лет от Млечного Пути и запросили аудиенцию у телескопа Хаббла, чтобы повнимательнее изучить недавно обнаруженные сверхновые звезды.
1990-е годы подходили к концу, две команды наблюдателей за сверхновыми звездами соревновались друг с другом за право первой представить новую и улучшенную версию «диаграммы Хаббла» — ключевого космологии графика, на который расстояния удаленности от нас галактик наносятся в соответствии со скоростями, с которыми эти галактики удаляются от нас. Астрофизики вычисляют значения таких скоростей на основании эффекта Доплера (более подробно о нем — в главе 13), который изменяет цвет излучения галактик в зависимости от той скорости, с которой эти галактики от нас удаляются.
Соответствующие каждой галактике удаленность и скорость дальнейшего удаления отмечены на диаграмме Хаббла. В случае с относительно близкими галактиками кривая, соединяющая эти точки, вполне синхронно идет вверх, так как одна галактика, удаленная от нас в два раза больше, чем другая, демонстрирует и в два раза большую скорость удаления. Прямую пропорциональность между расстояниями до галактик и их скоростями удаления можно алгебраически выразить законом Хаббла — простым уравнением, описывающим базовые повадки Вселенной: v = H0 х d. Здесь v представляет собой скорость удаления, d — расстояние, а H0 — это универсальная постоянная (постоянная Хаббла), которая описывает всю Вселенную целиком в любой конкретный момент времени. Сторонние наблюдатели со всей Вселенной, изучая ее через 14 миллиардов лет после Большого взрыва, обнаружат, что галактики удаляются согласно описанной законом Хаббла формуле, и каждый такой наблюдатель получит одно и то же значение постоянной Хаббла, хотя назовут ее все они, конечно, по-разному. Эта предполагаемая межкосмическая демократия лежит в основе всей современной космологии. Мы не можем доказать, что вся Вселенная без исключения следует принципам этой демократии. Возможно, далеко за пределами доступной нам видимости космос ведет себя совсем иначе, чем «здесь». Но космологи отвергают подобные идеи, по крайней мере видимой и наблюдаемой нами Вселенной. Так что будем считать, что формула v = H0 х d представляет собой универсальный — вселенский! — закон.
Надо отметить, что постоянная Хаббла меняется со временем. Новая и улучшенная диаграмма Хаббла, включающая в себя галактики в миллиардах световых лет от нас, когда-нибудь откроет не только значение сегодняшней постоянной Хаббла (выраженной в градиенте линии, соединяющей точки соответствия расстояния и скорости удаления каждой отдельной галактики), но и динамику скорости расширения Вселенной за последние миллиарды лет. Значение скорости расширения Вселенной в начале ее существования будет определено данными в верхних значениях графика, так как они соответствуют наиболее далеким из изученных галактик (а значит, предстающим перед нами в своем глубоко «прошлом» виде). Таким образом, диаграмма Хаббла, охватывающая расстояния вплоть до многих миллиардов световых лет, сможет дать нам историческую картину расширения Вселенной, описанную ее переменной скоростью расширения.