История всего
Шрифт:
Таким образом, нам предстоит рассмотреть структурированную Вселенную сегодняшнего дня как итог неких преобразований, через которые прошло все ее содержимое с момента Большого взрыва. Любая попытка нащупать происхождение структур в нашем мире в прошлом невозможна без учета того, в какой Вселенной мы живем в настоящее время. Но даже при выполнении столь скромной задачи астрономы и космологи не избежали ряда фальстартов и ошибок, которые мы (хотелось бы верить!) уже оставили позади, чтобы отныне шагать вперед в ярком свете верных представлений о мироздании.
На протяжении большей части истории современной космологии астрофизики предполагали, что распределение вещества во Вселенной можно охарактеризовать как гомогенное и изотропное. В гомогенной Вселенной любое место выглядит так же, как и любое другое, — как две капли гомогенизированного молока. Изотропная Вселенная выглядит одинаково с любой точки обзора в любой заданный момент времени, простираясь от наблюдателя во все стороны. На первый взгляд может
Пример гомогенной, но не изотропной ситуации — стена традиционной кладки из совершенно одинаковых прямоугольных кирпичей, такая, где каждый горизонтальный ряд словно сдвинут вправо влево на полкирпича относительно предыдущего ряда. В масштабе нескольких расположенных поблизости друг от друга кирпичей и скрепляющего их раствора стена выглядит одинаково, какой ее участок ни выбери — кирпичи да кирпичи, — но взгляд, направленный в какую-либо сторону из разных точек на такой стене, будет натыкаться на разные узоры линий цементного раствора; изотропии не получится.
Самое интересное заключается в том, что математический анализ сообщает: космос может быть гомогенным только в том случае, если он окажется одновременно и изотропным. Еще одна формальная математическая теорема подсказывает нам, что если космос оказывается изотропным в любых трех своих точках, то его изотропия повсеместна. А ведь кто-то отвергает науку математику как «неинтересную» и «неэффективную»!
Хотя космологи и предположим в первую очередь именно с эстетической точки зрения, что распределение вещества во Вселенной гомогенно и изотропно, со временем они приняли эту идею и в качестве фундаментального космологического принципа. Можем назвать его принципом заурядности: с чего бы это одной части Вселенной быть более интересной, чем другой? В малых масштабах расстояний и размеров ошибочность этого заявления сразу бросается в глаза. Мы с вами живем на твердой планете, где средняя плотность вещества составляет 5,5 грамма на кубический сантиметр (фанатам американской системы мер будет понятнее формулировка «340 фунтов на кубический фут»). Средняя плотность вещества на Солнце, типичной звезде нашей системы, составляет 1,4 грамма на кубический сантиметр. Межпланетное пространство между ними при этом отличается существенно меньшей средней плотностью вещества — она примерно в один миллиард раз меньше. Межгалактическое пространство, занимающее большую часть объема всей Вселенной, содержит менее одного атома вещества на каждые десять кубических метров. Здесь средняя плотность вещества еще в один миллиард раз ниже, чем в межпланетном пространстве, — от этих чисел даже начинает казаться, что фразу «Ты довольно плотный!..» следует воспринимать исключительно как комплимент.
Раздвигая горизонты своих научных знаний, астрофизики обратили внимание на то, что галактики вроде нашего родного Млечного Пути состоят из звезд, которые «парят» в практически пустом межзвездном пространстве. Соответственно, и галактики тоже объединяются в кластеры, что напрямую нарушает условия как гомогенности, так и изотропии Вселенной. Но оставалась надежда, что стоит астрофизикам нарисовать подробную карту распределения вещества во Вселенной в самых крупных масштабах, как они заметят, что сами по себе галактические кластеры распределены в ней гомогенно и изотропно. Для того чтобы гомогенность и изотропия могли одновременно существовать в конкретно взятом регионе космоса, он должен быть настолько крупным, чтобы внутри него нельзя было обнаружить какие-либо уникальные структуры (или уникальное отсутствие структур). Возьмем какой-то условный фрагмент такого региона: условия гомогенности и изотропии диктуют нам, что общие свойства такого региона должны быть тождественны средним свойствам любого фрагмента из любой части данного региона. Было бы как-то неловко, если бы правая часть Вселенной выглядела совсем не так, как левая, правда?
Какого же размера регион нужно изучить, чтобы обнаружить гомогенную и изотропную Вселенную? Диаметр нашей планеты Земля составляет 0,04 световой секунды. Орбита Нептуна занимает в пространстве 8 световых часов. Звезды Млечного Пути образуют собой широкий и плоский диск примерно в 100 тысяч световых лет от края до края. Галактический суперкластер Девы, в который в том числе входит и наш Млечный Путь, достигает в ширину 60 миллионов световых лет. Получается, что подходящий объем, который, возможно, позволит нам обнаружить гомогенность и изотропию
Однако космологам в итоге удалось создать такую карту, в которой гомогенность и изотропия были несомненны. Оказывается, если взять фрагмент Вселенной шириной примерно 300 миллионов световых лет, он будет удивительно похож на любой такой же фрагмент из другого ее региона. Желанный и долгожданный критерий гомогенности был достигнут. Однако в более скромных масштабах все неравномерно распределенное вещество до сих пор выглядит более чем негомогенным и неизотропным.
Три столетия назад Исаак Ньютон задумался над тем, как могло вещество обрести структуру. Его изобретательный ум с легкостью принял концепцию изотропной и гомогенной Вселенной, но в нем не мог не прозвучать вопрос, который многие из нас себе и не задали бы: «Как можно сформировать какую бы то ни было структуру во Вселенной так, чтобы все составляющее ее вещество не собралось при этом в единую целую массу гигантских размеров?» Ньютон считал, что, раз мы такого во Вселенной не наблюдаем, значит, она бесконечна. В 1692 году в своем письме к Ричарду Бентли, одному из магистров Тринити-колледжа (или колледжа Святой Троицы) Кембриджского университета, Ньютон выдвинул следующее предположение.
«Мне кажется, что, если бы все вещество нашего Солнца и планет и все вещество Вселенной было бы равномерно рассеяно в небесных глубинах, и если бы каждая частица имела врожденное тяготение ко всем остальным, и если бы, наконец, пространство, в котором рассеяна эта материя, было конечным, вещество снаружи этого пространства благодаря указанному тяготению влеклось бы ко всему веществу внутри и вследствие этого упало бы в середину всего пространства и образовало бы там одну огромную сферическую массу. Однако, если бы это вещество было равномерно распределено по бесконечному пространству) оно никогда не могло бы объединиться в одну массу, но часть его сгущалась бы тут, а другая там, образуя бесконечное число огромных масс, разбросанных на огромных расстояниях друг от друга по всему этому бесконечному пространству.» [32]
32
Джинс Дж. Вселенная вокруг нас. — Л. — М.: Гостехиздат, 1932.
Ньютон также предполагал статичность своей бесконечной Вселенной — она не расширялась и не сжималась. В такой Вселенной объекты «порождались» силами тяготения, тем притяжением, что каждый объект, обладающий массой, выказывает всем другим объектам системы. Его заключение о центральной роли гравитации в зарождении структуры пространства актуально и сегодня, хотя перед современными космологами стоит гораздо более тяжелая задача, чем в свое время перед Ньютоном. Вместо того чтобы наслаждаться теми удобствами, которые предлагала бы нам статическая Вселенная, мы вынуждены ни на минуту не забывать о том, что она, начиная непосредственно с момента Большого взрыва, постоянно расширяется, а это естественным образом препятствует скапливанию вещества в единую массу под воздействием гравитации. Задача по преодолению настойчивого противостояния космического расширения каким-либо гравитационным процессам встает еще более остро, когда вспоминаешь, что Вселенная выросла в размерах особенно стремительно в ближайшее после Большого взрыва время — и именно в ту эпоху начали формироваться первые ее структуры. На первый взгляд рассчитывать на то, что в тот период гравитации хватит на формирование огромных объектов из диффузного газа, глупо. Но каким-то образом гравитации это удалось!
В своем самом нежном возрасте Вселенная разрослась столь быстро, что, если бы она была строго однородной и изотропной в — любых своих масштабах, гравитация просто не смогла бы одержать победу над расширением. Сегодня в мире не было бы ни галактик, ни звезд, ни планет или людей, только атомы равномерно заполняли бы собой мировое пространство. В этом скучном и неинтересном космосе не было бы ни одного восхищенного наблюдателя и ни одного достойного восхищения объекта. Но мы живем в веселой и увлекательной Вселенной именно потому, что в эти самые первые мгновения ее существования появились неоднородность и анизотропия вещества. Это как если бы из некоего бульонного кубика планировалось приготовить космический бульон из вещества и энергии самых разных концентраций. Если бы не этот бульонный кубик, стремительно расширяющаяся Вселенная не позволила бы гравитации стянуть хоть сколько-нибудь вещества в единые объекты и позднее сформировать знакомые нам структуры, которые мы сегодня частенько принимаем как должное, не задумываясь об их происхождении во Вселенной.