Чтение онлайн

на главную

Жанры

История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет
Шрифт:

Третий сценарий предпочитают биологи, исследующие происхождение жизни, – это РНК, модель, основанная на гипотетической молекуле РНК, способной копировать саму себя. Чтобы понять привлекательность и популярность этой модели, надо снова вернуться к предыдущим рассуждениям, вспомнить две важнейшие функции жизни: метаболизм (производство вещества) и генетику (передачу следующим поколениям информации о том, как производить вещество). Современные клетки используют похожую на лестницу молекулу ДНК для накопления и копирования информации, необходимой для создания белка, но для создания самой ДНК они используют сложные многослойные белковые молекулы. Так что же появилось раньше, ДНК или белок? Выясняется, что в обоих этих процессах центральную роль сыграл третий тип молекул – РНК.

РНК

представляет собой изящный полимер – длинную молекулу-цепь, собранную из более мелких отдельных молекул (нуклеотидов), вроде нити бус или цепочки букв в предложении. Четыре такие молекулярные буквы, обозначим их как A, C, G и U, могут нанизываться в любой последовательности, как закодированное сообщение. Эти «буквы» РНК на самом деле содержат генетическую информацию (подобно ДНК). В то же время молекулы РНК способны принимать самые сложные формы, которые обладают свойством катализировать важнейшие биологические реакции (подобно белкам). Именно молекулы РНК содействуют синтезу всех белков, передавая информацию и одновременно катализируя образование белков. Таким образом, из всех живых молекул именно РНК способна «сотворить все, что угодно».

Модель мира, основанная на РНК, предполагает, что некий, пока еще до конца не изученный химический механизм произвел бесчисленное количество нитей РНК или, возможно, похожей на нее информационно насыщенной молекулы. Почти все эти разнообразные нити ничего не делали: они либо выживали, либо постепенно распадались. Но небольшое количество отборных нитей РНК приобретали весьма полезные для себя свойства: они скручивались, обретая большую устойчивость, или крепко цеплялись за надежную неорганическую поверхность, или уничтожали соперничающие молекулы – в общем, еще один пример молекулярной конкуренции в добиологическом «бульоне».

Суть гипотезы о роли РНК в происхождении живого мира заключается в том, что одна из мириад этих нитей освоила хитрый трюк – как воспроизводить копии самой себя, т. е. превратилась в самовоспроизводящуюся молекулу. Нельзя сказать, что идея эта слишком надуманная. В конце концов, РНК во многом подобна ДНК, которая способна к самокопированию (репликации). Более того, РНК легко видоизменяется. Таким образом, первая молекула РНК, создавшая копию самой себя, пусть пока еще несовершенную, вскоре оказалась окруженной бесчисленными, хотя и слабыми, конкурентами – вариантами самой себя, часть которых, однако, быстро преуспела в искусстве репликации либо за счет экономии энергопотребления, либо в силу меняющейся окружающей среды. Такое успешное развитие молекулы РНК приблизило ее к необходимым условиям возникновения жизни: она превратилась в самоподдерживающуюся химическую систему, способную к усвоению нового и к развитию по Дарвину – иными словами, в пригодную к молекулярной эволюции.

Возможно, потребовалось много времени, чтобы возникла эта первичная, самовоспроизводящаяся молекулярная система, примитивная, но действующая, будь то в виде уксусно-лимонного цикла, системы автокатализа или репликации РНК. Но в ее распоряжении на протяжении многих миллионов лет было невообразимое число комбинаций молекул на триллионах триллионов минеральных поверхностей, занимавших более 500 млн км2 поверхности Земли. И вот одна из этих неисчислимых комбинаций в каком-то месте в какой-то миг сработала. Она освоила механизмы репликации и эволюции. Это новшество изменило мир.

Опыты биолога Джека Шостака в Бостонской лаборатории Гарварда демонстрируют силу избирательности в молекулярной эволюции. Большинство своих экспериментов группа Шостака начинает со смеси 100 трлн различных разновидностей РНК, каждая из которых состоит из 100 нитей произвольной последовательности A, C, G и U. Громадное количество нитей РНК скручивается, принимая разнообразные формы, и сталкивается с задачей: например, плотно соединиться с молекулой другой формы. Сотрудники лаборатории Шостака выливают раствор со 100 трлн нитей РНК в мензурку с мелким стеклянным бисером, причем каждая бусинка покрыта молекулой специфической формы. Эти молекулы становятся мишенями, действуя в насыщенном растворе РНК подобно крючкам. Большинство молекул РНК на эти крючки не реагирует, поскольку их формы не соответствуют эталону. Но небольшая доля скрученных молекул РНК прицепляется к бусинам-мишеням и закрепляется на них.

Здесь-то и начинается самое интересное, когда исследователи выливают использованный раствор (вместе с почти 100 трлн непригодных нитей РНК) и извлекают те немногочисленные нити, которые в силу случайных свойств формы прикрепились к стеклянным бусинам. Применяя стандартные приемы генетической технологии, имитирующие вероятные добиологические процессы, они готовят новую партию молекул РНК (тоже 100 трлн нитей), но на сей раз все молекулы являются сырыми копиями – мутантами тех немногих нитей РНК, которые проявили активность на первом этапе. Повторный этап дает новое поколение действующих молекул РНК, при этом в новом поколении находятся вариации молекул, которые реагируют на бусин-хозяев гораздо увереннее, чем первое поколение. Некоторые «дочки» первичных молекул намного превосходят по активности своих родителей. Процесс повторяется несколько раз, и с каждым поколением новые нити РНК крепятся к бусинам все активнее и прочнее, пока не выявятся самые способные из мутантов: они наиболее энергично сцепляются с выбранными мишенями.

Весь эксперимент длится несколько дней – меньше недели требуется на то, чтобы от случайных нитей возникло поколение прочно крепящихся молекул. Но попросите этих самых блестящих в мире исследователей смоделировать действующую молекулу РНК на пустом месте, они ответят, что это практически невозможно, даже с применением современных вычислительных ресурсов. Ни одна из известных сегодня методик не может точно предсказать, какую именно свернутую форму примет молекула РНК или как она прикрепится к другим молекулам сложной формы. Не интеллектуальный расчет, а сама молекулярная эволюция на сегодня является самым эффективным методом достижения результата. (Вот где истоки суждения, что, даже если жизнь сотворил Бог, у нее хватило ума воспользоваться эволюцией.)

Взрывное развитие жизни

В добиологическом «бульоне» любое скопление молекул, обладавших малейшим полезным свойством, имело преимущество. Но все эти молекулярные войны блекнут по сравнению с преимуществом, которым обладали нити РНК, способные не только функционировать, но и создавать копии самих себя. Молекула, обладавшая свойством репликации, обеспечивала себе выживание, создавая более или менее одинаковых «дочек». Процесс репликации был неизбежно беспорядочный, поэтому некоторые из копий оказывались мутантами. Большинство мутантов просто погибали или не обретали никакого особого преимущества, но некоторые превосходили своих родителей, и за счет этого осуществлялась эволюция системы. Благодаря какой-нибудь случайной ошибке исходная молекула производила потомство, которое лучше переносило высокое давление, повышение температур или солености окружающей среды; оно могло ускорить процесс репликации, находить новые источники питания или уничтожать более слабых конкурентов. Те молекулы РНК, которые надежно укрепились на минеральной поверхности или нашли безопасное убежище внутри мембранной капсулы, получили еще больше преимуществ.

Не имея конкурентов, первоначальные самовоспроизводящиеся молекулы захватывали богатые питанием области в мгновение геологического ока. Может быть, это парадоксально звучит, когда мы говорим о том, что микроскопические молекулы захватывают пространство, но почему бы не вспомнить, что первой, относительно слабой самовоспроизводящейся молекуле понадобилась всего неделя, чтобы создать копию самой себя. (В отличие от этого многие современные микроорганизмы размножаются за считаные минуты.) Неделя за неделей две молекулярные нити превращались в четыре, четыре – в восемь, и т. д. При такой скорости потребовалось бы около полугода, чтобы сформировалась плотная масса, состоящая из 100 млн самовоспроизводящихся молекул, т. е. достаточно крупный объект, видимый невооруженным глазом. Еще через 20 недель масса РНК-молекул уже могла бы заполнить наперсток. Добавим еще 20 недель – и первые проявления жизни могли бы заполнить приличных размеров ванну.

Поделиться:
Популярные книги

Тринадцатый IV

NikL
4. Видящий смерть
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Тринадцатый IV

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

Горькие ягодки

Вайз Мариэлла
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Горькие ягодки

На границе империй. Том 9. Часть 3

INDIGO
16. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 3

Черный маг императора 3

Герда Александр
3. Черный маг императора
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора 3

На границе империй. Том 7. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 7. Часть 4

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4

Лорд Системы 8

Токсик Саша
8. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 8

Темный Патриарх Светлого Рода 7

Лисицин Евгений
7. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 7

Совок 5

Агарев Вадим
5. Совок
Фантастика:
детективная фантастика
попаданцы
альтернативная история
6.20
рейтинг книги
Совок 5

Специалист

Кораблев Родион
17. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Специалист

Теневой путь. Шаг в тень

Мазуров Дмитрий
1. Теневой путь
Фантастика:
фэнтези
6.71
рейтинг книги
Теневой путь. Шаг в тень

Лапочки-дочки из прошлого. Исцели мое сердце

Лесневская Вероника
2. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Лапочки-дочки из прошлого. Исцели мое сердце

Я – Орк. Том 5

Лисицин Евгений
5. Я — Орк
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 5