Избранные труды
Шрифт:
____________________________
* Источник: [ 1960 а].
Конец страницы 667
Начало страницы 668
методы, напротив, должны быть рассчитаны прежде всего на воспитание способностей учащихся, причем особое внимание при этом должно быть обращено на формирование у учащихся навыков самостоятельного умственного труда, умения самостоятельно планировать свою работу, анализировать ее состав, намечать этапы и т.п.
2. В школе одним из главных средств воспитания мыслительных способностей учащихся является решение учебных задач.
В настоящее время при построении отдельных учебных задач и определении порядка их расположения в учебниках и задачниках учитывают в основном только предметное содержание этих задач и усложнение содержания и, как правило, не учитывают сложности тех действий, которые учащийся должен проделать, чтобы решить задачу. Между тем главным фактором, определяющим развитие мыслительных способностей в
3. Подобно всем другим мыслительным процессам, процессы решения задач могут рассматриваться в двух хотя и теснейшим образом связанных друге другом, но тем не менее существенно различных планах:
А. По своему объективному составу и структуре, которые только и могут обеспечить решение данной задачи и в этом отношении не зависят от субъективных средств отдельных индивидов; в этом плане мыслительный процесс решения задачи рассматривается как «трудовая норма».
Б. С точки зрения тех действий, которые могут и должны осуществить индивиды, чтобы, исходя из определенных знаний и навыков деятельности, в той или иной форме овладеть новым составом деятельности, новой «нормой»; действия второго плана определяют тот субъективный способ, каким отдельные индивиды в дальнейшем будут осуществлять трудовую мыслительную деятельность.
В настоящем сообщении мы будем рассматривать процессы решения задач только в первом плане — как «норму». Такой анализ является предварительным условием развертывания исследований процессов решения задач во втором плане; действительно, чтобы исследовать формирование каких-то знаний или мыслительных операций в онтогенезе, надо предварительно выяснить, что при этом формируется, что представляют
Конец страницы 668
Начало страницы 669
собой уже сложившиеся, готовые знания и мыслительные операции. Мы исключим также практические действия и ограничимся процессами решения познавательных задач.
4. Решение всякой познавательной задачи является определенным мыслительным процессом. Поэтому исследование процессов решения задач во многих отношениях фактически совпадает с исследованием мыслительных процессов. Суть мыслительной деятельности, с нашей точки зрения [ 1957 b, с. 42; 1958 b*, I, {с. 590-592}; 1960 с*, I, {с. 1-3}], заключается в замещении исследуемых объектов другими объектами (эталонами и «посредниками») или знаками. Поэтому процессы решения задач правильнее всего классифицировать в соответствии с тем, чем в ходе решения замещается исследуемый объект и как он замещается.
На первом этапе анализа в этом направлении оказалось целесообразным подразделить все процессы решения задач на четыре основные группы:
(1) Для характеристики первой группы можно взять мыслительные операции, которые мы осуществляем, отвечая на вопросы: «Сколько предметов на этом столе?», «Какова длина этого стола?», «Равны ли по длине эти две веревки?» и т.п. Во всех этих случаях исследуемый объект (обозначим его знаком X) и вопрос относительно него заданы таким образом, что существует одна познавательная операция — счет, измерение, наложение и т.п. (обозначим их знаком А, читай «дельта»), — решающая задачу. Эта познавательная операция направлена непосредственно на объекты (и сама представляет собой особую модификацию замещения одних объектов другими), она выделяет в объектах определенное содержание и может рассматриваться как лежащая в одной плоскости с самими объектами (см. [1958 b*, V, {с. 618-620}; 1960 с*, I, {с. 1-3}]). Результат этой познавательной операции — определенное языковое выражение или знаковая форма (цифры, слова «равно» и «не равно» и т.п.) находится уже как бы в другой плоскости по отношению к объектам и самой операции: операция как бы исчезает и в этом языковом выражении, последнее замещает операцию и выделенное посредством нее содержание. Наглядно-схематически описанный процесс решения задачи может быть изображен формулой Х^(А), где вертикальная стрелка ^ обозначает переход от объективного содержания, выявленного в плоскости объектов, к знаковой форме, лежащей уже в другой, более «высокой» плоскости.
(2) В ряде случаев объект и вопрос относительно него бывают заданы таким образом, что не существует одной познавательной операции, посредством которой можно было бы непосредственно решить задачу. Например, нельзя непосредственно сопоставить по длине два непередвигаемых объекта, расположенных в разных местах; нельзя измерить длину кривой линии прямолинейным эталоном и т.п. В этих
Конец страницы 669
Начало страницы 670
случаях задачу решают, преобразуя исходный объект X к такому виду Y или замещая объект X другим объектом Y, таким, что к Y может быть применена какая-либо операция типа , дающая знание, которое может рассматриваться как ответ на вопрос относительно X. При этом между X и Y устанавливается особое отношение замещения, которое получило название отношения эквивалентности [Ладенко, 1958 а ]. Именно таким образом, к примеру, решал задачу Галилей, когда он приступил к изучению свободного падения тел, но не мог достаточно точно измерять время такого движения и заместил его движением шарика, скатывающегося по наклонной плоскости (см. [ 1958 а * ]). Наглядно-схематически описанный процесс решения задачи может быть изображен формулой X = Y^(А), где знак = (читай «эквивалентно») обозначает замещение исследуемого объекта X другим объектом Y. Для этого процесса характерно то, что как операция замещения, так и познавательная операция А осуществляются в плоскости объектов, а языковое выражение (А), фиксирующее содержание, выделенное посредством в объекте Y, относится к объекту X (см. [Ладенко, 1958 а, с. 70]).
(3) В качестве примера процессов третьей группы можно взять определение вида вещества в соответствии с положением «Если вещество окрашивает лакмус в красный цвет, то это вещество есть кислота». Необходимым условием процессов этого вида являются предварительная выработка и использование в ходе самого решения задачи сложной знаковой формы (иначе — формального знания), которая в простейших случаях представляет собой отдельное выражение вида «Все (В) суть (А)» или систему таких выражений. В специальной серии сообщений [ 1958 b*] мы разобрали условия и закономерности формирования знаковых форм такого вида, относящихся к категории атрибутивного знания, и дали общую схему решений, основанных на использовании этих форм (см. [ 1958 b*, V]). Наглядно-символически эти процессы решения задач можно изобразить в формуле X^(B)(A), где (В) есть знаковое выражение, фиксирующее результат применения операции к объекту X, а изображает «формальные преобразования» (осуществляемые в соответствии со связями и правилами формальной знаковой системы), приводящие выражения вида (В), (С), (О)... к виду (А), которое может рассматриваться как ответ на исходный вопрос относительно объекта X. В простейших случаях, когда знаковые системы имеют вид «Все (В) суть (А)», эти преобразования представляют собой просто переход по связи от (В) к (А) и приписывание объекту X свойства, зафиксированного в выражении (А), — процесс решения задачи может быть изображен в этом случае формулой Х^(B)->(A), — но в более сложных случаях эти преобразования включают в себя собственно формальные действия — «присоединение», «исключение» и т.п. (см. [1958 b*, V; {с. 617-618}]).
Конец страницы 670
Начало страницы 671
Другими примерами процессов этой же группы будут: сложение нескольких чисел, дающее ответ на вопрос о количестве объектов в совокупности, части которой находятся в разных местах; вычисление длины окружности на основании формулы l = 2r, после того как измерена длина радиуса этой окружности; использование уравнения химической реакции для ответа на вопрос, какие вещества получатся, если мы приведем во взаимодействие другие определенные вещества, и т.п. Генетически все эти процессы значительно сложнее, чем процессы, основывающиеся на знаковой форме атрибутивного вида, и, в частности, возникают как сокращения комбинаций из процессов решения вида (2) и (3), но с функционарной точки зрения, т.е. с точки зрения способа непосредственного осуществления, они ничем принципиально не отличаются от процессов, разобранных выше. Для всех процессов этой группы характерно, что большая часть составляющей их деятельности лежит в плоскости знаковой формы (есть, следовательно, деятельность не с объектами, а со знаковыми выражениями) и имеет чисто формальный характер.
(4) К четвертой группе мы относим все те случаи, когда объект и вопрос относительно него заданы таким образом, что для решения задачи нужно осуществить сложную комбинацию замещений исходного объекта различными знаковыми формами (часто также и одних знаковых форм другими) и преобразований (формальных и содержательных) этих знаковых форм, т.е. процессы, представляющие собой комбинации процессов вида (2) и (3). Характерными примерами процессов такого вида являются решения геометрических задач. Важно специально отметить, что на определенных этапах решения этих задач знаковые формы, замещающие исходный объект, рассматриваются как объекты особого рода и к ним применяется особая деятельность, напоминающая содержательные преобразования собственно объектов, рассмотренные под п. (2). Специфику подобных процессов решения задач составляют каждый раз порядок и способы комбинирования элементарных процессов вида (2) и (3). Соответственно мы получаем для изображения этих процессов решения задач различные формулы. Например, процесс решения геометрической задачи, при котором исходная фигура включается в более сложную фигуру и получает в связи с этим новые определения, позволяющие в соответствии с уже имеющейся сложной знаковой формой приписать этой фигуре (а вместе с тем и объекту X) новое свойство, может быть изображен в формуле: