Чтение онлайн

на главную - закладки

Жанры

Как было получено изображение обратной стороны Луны
Шрифт:

Рис. 10. Устройство электронно-лучевой трубки с электростатическим управлением.1 — нить накала; 2 — катод; 3— управляющий электрод; 4 — первый анод; 5 — электропроводящее покрытие; 6 — второй анод; 7 — пластины горизонтального отклонения; 8 — пластины вертикального отклонения; 9 — стеклянная колба трубки; 10 — слой люминесцирующего вещества (экран трубки).

Электронный

прожектор трубки состоит из нескольких электродов, служащих для создания фокусировки и изменения интенсивности электронного пучка. Прожектор устанавливается соосно с горловиной колбы трубки и содержит подогревный катод, управляющий электрод и два коаксиальных цилиндра, называемых первым и вторым, анодами. Катод представляет собой никелевый цилиндр с плоским или слегка вогнутым дном. Углубление в центральной части катода заполняется стойким оксидом — хорошим источником электронов. Катод подогревается вольфрамовой нитью, покрытой изолирующим жароупорным материалом.

За катодом размещается управляющий электрод, представляющий собой полый цилиндр с отверстием, расположенным против центра катода. Управляющему электроду сообщается отрицательный (до нескольких десятков вольт) потенциал относительно катода. Изменение величины этого напряжения изменяет интенсивность тока луча и соответственно яркость свечения экрана.

Первый анод выполняется в виде полого цилиндра с плоским дном, имеющим отверстие, обращенное к катоду. Назначением этого электрода является создание вблизи катода электрического поля большой напряженности, необходимого для формирования электронного пучка. Внутри анода помещено несколько перегородок с отверстиями — диафрагм, которые задерживают электроны, траектории которых отклонены от оси.

Второй анод соединяется с внутренним проводящим покрытием баллона трубки и имеет потенциал, в 3—10 раз более высокий, чем потенциал первого анода. Потенциал второго анода определяет скорость электронов, бомбардирующих экран. Между первым и вторым анодами образуется главное фокусирующее поле, стягивающее электроны в узкий пучок.

Экран трубки состоит из тонкого слоя люминофора, нанесенного на внутреннюю поверхность передней стенки колбы. Быстро движущиеся электроны бомбардируют люминофор и отдают ему при этом свою энергию. Последняя частично выделяется в виде тепла, а частично возбуждает атомы кристаллического люминофора, что проявляется в виде излучения электромагнитных колебаний различных частот, включая видимую область спектра. Состав люминофора и способ его нанесения определяют цвет, яркость свечения и способность люминофора сохранять свечение после прекращения облучения электронным пучком. Время, в течение которого сохраняется свечение, называется временем послесвечения.

Электронная развертка с электростатическим отклонением осуществляется с помощью двух пар взаимноперпендикулярных металлических пластин. Между пластинами при подаче на каждую пару их напряжения создаются электрические поля, направленные перпендикулярно оси трубки. Силы взаимодействия между этими полями и движущимися по направлению к экрану электронами отклоняют электроны от оси, причем отклонение пропорционально напряженности электрического поля. Напряженность поля между пластинами меняется при изменении отклоняющих напряжений по определенному закону. Для создания прямоугольного растра, т. е. воспроизведения всех горизонтальных строк на экране трубки, к отклоняющим пластинам необходимо подавать напряжения пилообразной формы (см. рис. 9,б и в). Частота колебаний, обеспечивающих смещение электронного пучка по вертикали, должна соответствовать частоте смены кадров, а частота напряжения, подаваемого на горизонтальные пластины, должна быть во столько раз больше частоты смены кадров, на сколько строк разлагается изображение. Движение пучка слева направо под воздействием горизонтального отклоняющего поля называется прямым ходом строчной развертки. Быстрое же возвращение его в начальное положение называется обратным ходом. Аналогично медленное движение электронного пучка сверху вниз под действием поля между вертикально отклоняющей парой пластин называется прямым ходом вертикальной развертки,

а быстрое его возвращение вверх — обратным ходом.

Время возвращения пучка в исходное положение должно быть минимальным. Чтобы пучок не прочерчивал на экране линий, мешающих наблюдениям, трубка во время обратного хода обычно запирается специальными гасящими импульсами. Время обратного хода пучка по кадру и строке и используется для посылки так называемых синхронизирующих сигналов. Последние служат для установления жесткой связи между движениями пучков передающей и приемной трубок, т. е. в случае автоматической межпланетной станции — между проекционной трубкой аппаратуры космической станции и трубками на наземных наблюдательных пунктах.

Генераторы развертки космической станции были собраны на полупроводниковых приборах с использованием малогабаритных, совершенных по своим электрическим свойствам конденсаторов, трансформаторов, сопротивлений и других элементов.

Осуществить развертку изображения на пленке световым пятном можно и другим способом. На экране электронно-лучевой трубки нужно в этом случае перемещать электронный пучок лишь в горизонтальном направлении, а развертку в вертикальном направлении осуществлять за счет одновременной непрерывной протяжки пленки в продольном направлении.

Как уже говорилось, фокусировка и отклонение электронного пучка могут быть осуществлены и магнитными полями. Трубки с магнитной фокусировкой и магнитным отклонением пучка обеспечивают большую четкость изображения, чем электростатические трубки, особенно при больших размерах экранов. Трубки с магнитной фокусировкой и магнитным отклонением пучка при равных размерах экранов имеют меньшую длину по сравнению с электростатическими. Однако отклонение пучка достигается в электростатических трубках более простыми средствами. Размеры, вес и потребляемая энергия устройств, осуществляющих электромагнитное управление электронным пучком, оказываются большими, чем у аналогичных электростатических трубок.

В системах с бегущим световым пятном обычно используют электронно-лучевые трубки с повышенной яркостью свечения экрана. Повышение яркости свечения достигается в них за счет применения люминофоров с повышенной светоотдачей, увеличения ускоряющего напряжения (напряжения второго анода в данном случае), которое может достигать нескольких десятков тысяч вольт, и увеличения количества электронов в пучке.

Итак, использование электронно-лучевой трубки позволяет в определенной последовательности просвечивать небольшие участки пленки, на которой зафиксировано изображение Луны. Световой поток, пропущенный этими участками пленки, попадает на фотоэлектронный умножитель, в котором осуществляется многократное усиление фототока.

Принцип действия фотоэлектронного умножителя рассмотрим на примере многокаскадного фотоэлектронного умножителя, схематическое изображение электродов которого приведено на рис. 11. В приборе имеется несколько электродов, на поверхность которых нанесен активирующий слой цезия. Первый из электродов является фотокатодом, а последний — анодом. Фотокатод здесь по форме подобен промежуточным электродам — эмиттерам. Он может быть выполнен также в виде полупрозрачного покрытия на внутренней поверхности той или иной части колбы умножителя. Перед фотокатодом на пути светового пучка помещена редкая проволочная сетка, препятствующая слишком сильному рассеянию электрического поля вблизи фотокатода. Число эмиттеров, располагаемых между фотокатодом и анодом, у разных приборов различно (до 16). Эмиттеры подключены к потенциометру так, что величина потенциала их увеличивается на одинаковую величину при увеличении порядкового номера электрода, начиная с фотокатода. Под действием светового потока с поверхности фотокатода испускаются электроны. Эти электроны ускоряются электрическим полем, бомбардируют первый эмиттер и выбивают с поверхности его электроны, причем количество вторичных (выбитых) электронов должно быть больше числа первичных электронов. Такой эффект достигается благодаря определенному выбору материала и соответствующей обработке поверхности эмиттеров. Применяемые в настоящее время эмиттеры испускают пять и более электронов на один первичный электрон. Иными словами, коэффициент вторичной электронной эмиссии поверхности эмиттера равен 5 и более.

Поделиться:
Популярные книги

Не отпускаю

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
8.44
рейтинг книги
Не отпускаю

Прометей: Неандерталец

Рави Ивар
4. Прометей
Фантастика:
героическая фантастика
альтернативная история
7.88
рейтинг книги
Прометей: Неандерталец

Брачный сезон. Сирота

Свободина Виктория
Любовные романы:
любовно-фантастические романы
7.89
рейтинг книги
Брачный сезон. Сирота

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Новая мама в семье драконов

Смертная Елена
2. В доме драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Новая мама в семье драконов

Ох уж этот Мин Джин Хо 2

Кронос Александр
2. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 2

Звезда Чёрного Дракона

Джейн Анна
2. Нежеланная невеста
Любовные романы:
любовно-фантастические романы
4.40
рейтинг книги
Звезда Чёрного Дракона

Опер. Девочка на спор

Бигси Анна
5. Опасная работа
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Опер. Девочка на спор

Всадник Системы

Poul ezh
2. Пехотинец Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Всадник Системы

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Защитник

Астахов Евгений Евгеньевич
7. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Защитник