Как там у вас, на Бета-Лире?
Шрифт:
Да, Земля и Луна — сестры одной крови, и законы, установленные на Земле и для Земли, оказываются справедливыми и для Луны. И для Марса, и для Сириуса, и для созвездия Возничего, и вообще для любой точки Вселенной, которой только сумеет достигнуть человек — с помощью ракеты, телескопа или силы воображения.
оюсь, что я перегнул палку. Желая обосновать тезис об общности законов Вселенной, я дал повод считать, что на всех небесных телах, куда попадет (или не попадет) человек, все или почти все будет как на Земле. А отсюда следует, что организация экспедиции на Луну и другие планеты (о выходе за пределы Солнечной
«Я вырождаюсь!»
…Это был один из самых необычных — по содержанию, месту и времени действия — разговоров, какие мне когда-либо доводилось вести. Устроившись в гостинице небольшого городка Камень-на-Оби после двухсуточного бессонного путешествия по реке, я приготовился ко сну в своей отдельной комнатке. Но тут мое внимание привлек разговор двух соседей за фанерной перегородкой. Подслушивать, конечно, нехорошо, но попробуйте отключиться, когда, во-первых, собеседники ведут диалог на высоких децибелах, во-вторых, перегородка проводит звук, кажется, лучше, чем воздух, и, наконец, в-третьих, содержание разговора определенно химическое. Только химия какая-то странная.
— Интересно, — спрашивает первый из собеседников, у него несильный приятный тенор, — интересно, с каким элементом аргон будет реагировать охотнее: с хлором или натрием?
(Господи, что он несет?! Это аргон-то будет взаимодействовать! Инертный газ аргон?!)
— По-видимому, с хлором охотнее, — поразмыслив, ответствует другой эрудит.
— Почему? — любопытствует тенор.
— Потому что аргону при взаимодействии с хлором легче отдать восемь электронов, чем принять десять электронов при взаимодействии с натрием, — демонстрирует баритон свою химическую эрудицию.
(О каких электронах он говорит? С чего бы это аргон стал расставаться со своими электронами?)
— Но вот что совсем уж интересно, — неймется тенору, — будет ли реагировать хотя бы с каким-нибудь элементом никель?
— Никель?.. — задумчиво тянет баритон.
И тут я не выдерживаю:
— Будет!!! Будет!!! Никель взаимодействует и с галогенами, и с серой, и с кислородом.
— Ну, с кислородом уж никак никель взаимодействовать не будет! — убежденно и ничуть не удивившись неожиданному вмешательству в дружескую беседу, заявляет невидимый баритон. — Мы это на хорошей машине просчитывали.
— Слушайте, ребята, — советую я, с трудом сдерживая раздражение, — сдайте вашу хорошую машину во Вторчермет, а на полученную премию приобретите учебник химии. Для девятого класса. Тогда и поговорим. А сейчас спать надо. Баиньки.
— Спать действительно пора, — соглашается тенор, — только вы напрасно нервничаете, здесь все верно.
— Что верно? То, что, по-вашему, инертный газ аргон вступает во взаимодействие с кем ему вздумается? А никель ведет себя, как элемент нулевой группы?
— Совершенно правильно, — подтверждают друзья дуэтом, — именно так.
— Позвольте… — начинаю догадываться я, — так вы говорите не об обычной периодической системе, а о…
— Вот именно — «о»! — смеются невидимые соседи, и все сразу становится на свои места.
Наутро, когда я хотел продолжить разговор с ребятами о необычной периодической системе, выяснилось, что они уже отбыли теплоходом в Барнаул, и я, ожидая «Ракету» на Новосибирск, вспоминал, что известно химикам о необычной системе элементов.
Все помнят, что в периодической системе Менделеева пока [8] имеется семь периодов. В первом периоде находятся 2 элемента, во втором и третьем — по 8, в четвертом и пятом — по 18 элементов, в шестом — 32 элемента, столько же элементов войдет и в седьмой период, когда будут синтезированы элементы по 118-й. Известно и то, что в соответствии с законами строения атома количество элементов в каждом периоде определяется наибольшим числом электронов, которое может находиться на наружном электронном слое. Так, у элемента третьего периода на внешнем электронном слое может быть не больше восьми электронов (у аргона, завершающего элемента этого периода на третьем, последнем, слое именно 8 электронов).
8
Из сказанного в предыдущей главе ясно, почему здесь употреблено это наречие.
Да, все это известно. Но не все знают, что в таком размещении электронов, в атомах химических элементов, размещении, которое определяет структуру периодической системы, проявляется некоторая причудливость природы. И это, пожалуй, самое удивительное: кому-кому, а природе прихоти несвойственны. Размещая электроны на орбитах, природа пошла на нарушение одного из самых твердых своих принципов, согласно которому из всех путей осуществления какого-либо процесса, явления природа всегда выбирает самый простой.
Всегда? Увы, как мы сейчас увидим, не всегда. Количество элементов в периодах системы изменяется следующим образом: 2, 8, 8, 18, 18, 32, 32 — всего семь периодов. А ведь этих периодов в системе «должно» было бы насчитываться всего пять, и в каждом из них количество элементов «должно» было закономерно увеличиваться: 2, 8, 18, 32, 50. Слово «закономерно» здесь употреблено не случайно, потому что именно такой последовательности отвечал бы простой путь заполнения атомных орбит электронами.
Причины расхождения истинного положения дел с требованиями «простой» теории известны достаточно хорошо. И обусловлено это расхождение неуживчивостью электронов.
Располагаясь на определенной орбите, электрон как бы занимает место в уготованной для него комнате. Но, увы, природа не может предоставить электрону отдельную комнату. В соответствии с законами микромира в каждой комнате-орбите должны проживать несколько жильцов-электронов: в первой комнате 2 обитателя, во второй — 8, в третьей — 18, и так далее, в соответствии с тем перечнем, который был приведен для «простой» таблицы. Да, именно так электроны и размещались бы. Но дело в том, что в этом электронном общежитии приход каждого нового пришельца вызывает явное неудовольствие «старичков», да и «новичок», в общем, не расточает доброжелательность к старым обитателям. Скверный характер обитателей электронных орбит объясняется их одноименным зарядом. Итак, в плохом моральном климате на электронных оболочках следует винить закон старика Кулона!