Кандидатская диссертация. Методика написания, правила оформления и порядок защиты.
Шрифт:
Закон противоречия обычно используется в доказательствах: если установлено, что одно из противоположных суждений истинно, то отсюда вытекает, что другое суждение ложно. Уличение в противоречивости является сильнейшим аргументом против любых утверждений.
Однако закон противоречия не действует, если мы что-либо утверждаем и то же самое отрицаем относительно одного и того же предмета, но рассматриваемого 1) в разное время и 2) в разном отношении.
Возьмем для иллюстрации первый случай, когда кто-либо утверждает, что "Дождь благоприятен для сельского хозяйства", а в другой раз этот же человек высказывает противоположную мысль: "Дождь
В качестве примера второго случая возьмем ситуацию, когда о сотруднике Петрове можно сказать, что он хорошо знает английский язык, так как его знания удовлетворяют требованиям вуза. Однако этих знаний недостаточно для его работы в качестве переводчика. В этом случае можно утверждать: "Петров плохо знает английский язык". В этих суждениях знание Петровым английского языка рассматривается с точки зрения разных требований, т.е. один и тот же сотрудник, если его рассматривать в разных отношениях, дает основание для противоположных, но одинаково истинных оценок.
В научной работе нельзя игнорировать и требование закона исключенного третьего. Этот закон утверждает, что из двух противоречащих друг другу суждений одно из них ложно, а другое истинно.
Третьего не дано. Он выражается формулой: "А есть либо В, либо не В". Например, если истинно суждение "Наша фирма является конкурентоспособной", то суждение "Наша фирма не является конкурентоспособной" – ложно.
Такой закон не действует на противоположные суждения, т.е. на такие суждения, каждое из которых не просто отрицает другое, а сообщает сверх этого дополнительную информацию. Возьмем два суждения:
"Этот лес хвойный" и "Этот лес смешанный". Здесь второе суждение не просто отрицает первое, а дает дополнительную информацию, т.е. речь идет не просто о том, что неверно, будто этот лес хвойный, но говорится, какой именно этот лес.
Важность закона исключенного третьего для ведения научной работы состоит в том, что он требует соблюдения последовательности в изложении фактов и не допускает противоречий. Такой закон формулирует важное требование к научному работнику: нельзя уклоняться от признания истинным одного из двух противоречащих друг другу суждений и искать нечто третье между ними. Если одно из них признано истинным, то другое необходимо признать ложным, а не искать третье, несуществующее суждение, так как третьего не дано.
Важность соблюдения закона исключенного третьего для научных работников также и в том, что он требует от них ясных, определенных ответов, указывая на невозможность искать нечто среднее между утверждением чего-либо и отрицанием того же самого.
Требование доказательности научных выводов, обоснованности суждений выражает закон достаточного основания, который формулируется следующим образом: всякая истинная мысль имеет достаточное основание.
Достаточным основанием какой-либо мысли может служить любая другая мысль, из которой с необходимостью вытекает истинность данной мысли.
Почему говорят "достаточное основание", а не просто "основание"? Дело в том, что под одно и то же утверждение можно подвести бесконечно много оснований. Однако из них только некоторые могут рассматриваться как достаточные, если данное утверждение истинно. И ни одно не будет достаточным, если оно
Таким образом, закон достаточного основания требует, чтобы всякое суждение, которое мы используем в диссертационной работе, прежде чем быть принятым за истину, должно быть обосновано. Во всех случаях, когда мы утверждаем что-либо или убеждаем в чем-либо, мы всегда должны доказывать наши суждения, приводить достаточные основания, подтверждающие истинность наших высказываний, фиксируя внимание на высказываниях, обосновывающих истинность выдвигаемых положений, этот закон помогает отделить истинное от ложного и прийти к верному выводу.
Значительная часть научной информации носит характер выводных суждений, т.е. суждений, не полученных путем непосредственного восприятия каких-то фрагментов действительности, а выведенных из других суждений, которые как бы извлечены из их содержания. Логическим средством получения таких выводных знаний и является умозаключение, т.е. мыслительная операция, посредством которой из некоторого количества заданных суждений выводится иное суждение, определенным образом связанное с исходным. Все умозаключения можно квалифицировать как индуктивные и дедуктивные.
Дедуктивным называют такое умозаключение, в котором вывод о некотором элементе множества делается на основании знания общих свойств всего множества. Например: "Все металлы обладают ковкостью. Медь – металл. Следовательно, медь обладает ковкостью".
В этой связи под дедуктивным методом познания понимают именно дедуктивное умозаключение.
Таким образом, содержанием дедукции как метода познания является использование общих научных положений при исследовании конкретных явлений.
Дедукция выгодно отличается от других методов познания тем, что при истинности исходного знания она дает истинное выводное знание. Однако было бы неверным переоценивать научную значимость дедуктивного метода поскольку без получения исходного знания этот метод ничего дать не может. Поэтому ученому прежде всего нужно научиться пользоваться индукцией.
Под индукцией обычно понимается умозаключение от частного к общему, когда на основании знания о части предметов класса делается вывод о классе в целом. Однако можно говорить об индукции в более широком смысле слова как о методе познания, как о совокупности познавательных операций, в результате которых осуществляется движение мысли от менее общих положений к положениям более общим.
Следовательно, разница между индукцией и дедукцией обнаруживается только прежде всего в прямо противоположной направленности хода мысли.
Обобщая накапливаемый эмпирический материал, индукция подготавливает почву для выдвижения предположений о причине исследуемых явлений, а дедукция, теоретически обосновывая полученные индуктивным путем выводы, снимает их гипотетический характер и превращает в достоверное знание.
Индукция (или обобщение) бывает полная и частичная. Полная индукция состоит в исследовании каждого случая, входящего в класс явлений, по поводу которого делаются выводы. Подобная возможность представляется редко, поскольку отдельных случаев бесконечное множество. Таким образом, мы делаем обобщение на основе изучения типичных случаев. Но индукция на основе ограниченного объема данных не приводит к универсальным, или широко применимым, принципиальным заключениям. Процесс получения средней величины не есть умозаключение, а только перечисление, приводящее к суммарным данным.