Компьютерное моделирование химических взаимодействий
Шрифт:
Сервис только начал свое развитие. Пока на нем присутствуют только самые необходимые функции. Но мы нацелены на его скорейшее развитие и повсеместное внедрение.
К великому сожалению, 11.07.2023 ушел из жизни Александр Арсеньевич. Однако дело его продолжает жить. Надеемся, что благодаря сервису, носящему его имя, профессор Слободов останется в памяти научного сообщества одним из великих русских ученых, внесшим большой вклад в области термодинамического моделирования.
Расчет химического равновесия
Равновесие – это цель, к которой стремится по крайней мере вся неживая природа. Шарик под действием гравитации
Химическое взаимодействие не является исключением. Аналогом потенциальной энергии физического объекта, стремящегося к своему равновесному состоянию, в случае химических взаимодействий является свободная энергия системы. Система стремится к такому состоянию, при котором свободная энергия будет минимальной.
Постановка и решение задачи
Движущая сила химических процессов, протекающих в системах, – уменьшение свободной энергии этих систем. Например, для наиболее распространенных изобарно-изотермических условий эту роль играет энергия Гиббса.
В системе, находящейся первоначально в неравновесном состоянии, могут протекать различные химические реакции, в результате которых будут образовываться различные химические вещества.
Общая энергия Гиббса системы складывается из энергий Гиббса всех веществ, которые в нее входят. Другими словами, она является функцией числа молей входящих в нее веществ, а также давления и температуры.
В итоге, при заданных параметрах состояния в системе образуются такие вещества и в таких количествах, при которых энергия системы становится минимальной. Наша задача заключается в том, чтобы определить, что это за вещества и каковы их количества. Для этого нам нужно найти минимум функции, выражающей энергию Гиббса системы.
Поскольку в точке минимума функции многих переменных частные производные по всем переменным обращаются в ноль, то составим систему уравнений:
Так как G(n1, … , nN) – экстенсивная функция, т. е. является однородной первого порядка, то по теореме Эйлера имеем:
С другой стороны, из определения химического потенциала:
В нашем случае на решение данной системы накладываются условия материального баланса: количество вещества в системе должно оставаться постоянным. Это значит, что искать минимум функции надо не во всей области существования, а в той области, которая задается ограничениями. Функция в этом случае достигает минимума в точке экстремума (если он лежит в этой области), либо на границе области.
Поясним на примере. Рассмотрим систему, образованную из двух химических веществ: SO2 и N2.
Эта система состоит из трех химических элементов: S, O и N. В результате взаимодействия из этих веществ могут образоваться любые вещества, состоящие из этих трех элементов: оксиды серы и азота, соединения серы и азота и, наконец, соединения серы, азота и кислорода. Составим матрицу {ai,j}MxN материального баланса для этих веществ:
< image l:href="#"/>Запишем материальный баланс системы в следующем виде:
Где nj0 – количество молей элемента j, которое определяется количеством веществ, из которых первоначально состояла система; M – количество химических элементов в системе.
Кроме того, на решение нашей задачи накладывается еще одно условие: равновесные количества веществ не должны быть отрицательными. Наша система уравнений и неравенств примет следующий вид:
Таким образом, решив данную систему, мы определим количества веществ, образующихся в системе, когда она приходит в состояние равновесия.
В общем случае химический потенциал складывается из:
Рассмотрим случай, когда вещества в системе существуют в индивидуальном состоянии, то есть не растворяются друг в друге. В этом случае в уравнении (7) второй член станет равным нулю, и химический потенциал любого вещества в системе будет равен его энергии Гиббса. Назовем расчет равновесного состава системы, состоящей из индивидуальных веществ (фаз), фазовым расчетом.
Сущность решения заключается в определении коэффициентов функции в области, определяемой набором равенств и неравенств таким образом, чтобы значение функции было минимальным. В результате этого расчета мы будем иметь набор ni, то есть равновесные количества веществ в системе.
В случае, когда вещества в системе образуют растворы, необходимо учитывать их активности при расчете химического потенциала.
В результате решения этой задачи мы также получим набор ni (i=1…N) – количество каждого вещества, образующегося в системе, когда она приходит в состояние равновесия [1].
Описанный подход можно назвать термодинамическим моделированием равновесного состава. Он является той самой базой, на которой строятся расчеты фазово-химических взаимодействий.
Второй неотъемлемой частью является набор термодинамических характеристик веществ, как изначально входящих в исследуемую систему, так и способных образовываться в систему в результате их взаимодействия и изменения параметров состояния системы.
Базы данных термодинамических характеристик