Компьютерра PDA N124 (23.07.2011-29.07.2011)
Шрифт:
Разработка этих "кирпичиков" - путь, которым шла кремниевая фотоника последние двадцать лет. За это время была предложена масса уникальных решений, которые и явились той самой "суммой технологий", позволяющей фотонике перейти на качественно новый уровень. Уровень интегрированных оптико-электронных схем.
Вообще-то словосочетание "кремниевый лазер" - это оксюморон. Являясь так называемым непрямозонным полупроводником, кремний совершенно не способен излучать свет. Вот почему в оптоволоконных телекоммуникациях используются решения на основе других (прямозонных) полупроводников, например арсенида галлия. При этом кремний отлично подходит для создания волноводов и детектирования оптических сигналов в электрические.
Так
Так что же, кремниевому лазеру никогда не увидеть (точнее, не испустить) свет? Конечно же, нет. Кремний можно заставить светить, если применить различные хитрости. Например, легировать его материалом, который будет испускать фотоны за кремний. Или так изменить структуру самого кремния, что он вынужден будет засветиться. Третий способ - применить комбинационное рассеяние света (его ещё называют рамановским), временно превращающее кремний в практически прямозонный полупроводник.
Один из способов заставить кремний светиться - создать пористую кремниевую структуру
Схема и микрофотография лазера на основе рамановского рассеяния
В настоящее время наибольших успехов учёные добились в области технологий легирования кремния. Самая известная реализация кремниевого лазера непрерывного действия на их основе - лазер, разработанный компанией Intel совместно с Калифорнийским университетом Санта-Барбары. Учёным удалось с помощью окиси "приклеить" прямозонный полупроводник фосфид индия к кремниевому волноводу. Толщина "клея" при этом составляет всего 25 атомов. Создавая разность потенциалов между кремнием и фосфидом индия (это называется "электрическая накачка"), они добились формирования фотонов, которые через "клей" проникают в кремниевый волновод.
Схема схема гибридного кремниевого лазера непрерывного действия
На основе такой схемы создаются варианты гибридного кремниевого лазера с разной длиной волны (инфракрасного диапазона, прозрачного для кремния), что позволяет реализовать многоканальную коммуникационную систему.
Испускаемый кремниевым лазером поток фотонов можно представить как несущую частоту, которую требуется модулировать двоичным сигналом.
Оптические модуляторы считались невозможными до тех пор, пока учёные не решили использовать явление интерференции света. В общем виде модулированный оптический сигнал можно получить путём интерференции опорного пучка света и пучка, прошедшего через материал, изменяющий показатель преломления под воздействием электрического тока (так называемый электрооптический эффект). К сожалению, кремний и здесь подкачал - его симметричная кристаллическая решётка не позволяет реализовать электрооптический эффект. На помощь вновь пришло легирование.
Учёные раздвоили кремниевый волновод и нарастили на одном из его плеч слой нитрида кремния, который растянул кристаллическую решётку кремния. Приложение к этому участку напряжения приводит к преломлению света в этом плече волновода. При этом в другом плече этот же поток распространяется без искажения.
Микрофотография
Реализация всего модулятора Маха-Цендера и его варианты.
Объединение этих потоков на выходе приводит к их интерференции, при этом выходной поток будет модулироваться приложением напряжения к плечу волновода с нитридом кремния. Изобретать велосипед учёным не пришлось. Подобный эффект широко применяется в интерферометрах Маха-Цендера. Поэтому кремниевые модуляторы и демодуляторы назвали точно так же.
Множество модулированных световых потоков от множества лазеров с разной длиной волны может существенно повысить пропускную способность коммуникационного канала за счёт распараллеливания передачи данных. Но как это множество потоков объединить в один? Да ещё и таким образом, чтобы на выходе полученный суммарный поток снова можно было разделить. Здесь на помощь придут мультиплексоры. Оптические, естественно.
Идея оптического мультиплексора на основе массива волноводов (AWG)
Микрофотография AWG-мультиплексора
Оптический мультиплексор на основе каскада модуляторов Маха-Цендера
В настоящее время предложена технология микроминиатюрного мультиплексирования света путём его спектрального уплотнения (WDM - Wavelengths Division Multiplexing). Чаще всего для её реализации используют дифракционную структуру на основе массива волноводов и зеркал (AWG - Arrayed Waveguide Grating), в которой каждый пучок света движется по собственному волноводу, искривлённому в соответствии с его длиной волны. Смыкаясь, эти волноводы и дают результирующий спектрально-уплотнённый поток. Другим распространённым решением является использование каскада уже известных нам модулятров Маха-Цендера.
Решения в области кремниевой фотоники, предложенные компанией Intel, направлены на продвижение фотонных технологий в области интерфейсов периферийных устройств. Ближайшей коммерческой перспективой является пятидесятигигабитный оптический вариант интерфейса Thunderbolt (возможно, к моменту промышленной реализации его назовут по-другому). В более отдалённой перспективе Intel рассматривает увеличение пропускной способности до двухсот гигабит в секунду. Сказать, что это быстро, значит не сказать ничего: например, содержимое диска DVD при такой скорости может быть передано за одну секунду.
Точно такую же цель поставила перед собой лаборатория IBM Research. Поставила и добилась! Правда, использовать свой терабит IBM планирует не в коммуникационных интерфейсах, а в высокоскоростных шинах, соединяющих ядра многоядерного процессора.
Межядерная коммуникация на основе кремниевой фотоники
Идея проекта SNIPER от IBM Research (синим цветом показана фотонная часть схемы)
Проект SNIPER является практической реализацией идеи нанофотоники, использующей рассмотренные выше "строительные блоки" для создания фотонной коммуникационной сети. Эта фотонная сеть интегрирована поверх многослойного "пирога" системы на чипе, включающем многопроцессорный модуль и модуль оперативной памяти. Имея выходы наружу, такая сеть обеспечивает подключение этой системы на чипе к высокоскоростной оптической шине данных, соединяющей процессор с периферией. Внутренняя же волноводная разводка обеспечивает маршрутизацию данных между ядрами процессорного модуля.