Концепции современного естествознания: конспект лекций
Шрифт:
Второй составляющей классической физики является термодинамика, которая описывает тепловые явления в макромире. Теплота рассматривается как род внутреннего движения частиц: чем быстрее движение частиц, тем выше температура тела. Теорию тепла называли корпускулярной (от слова «корпускула» – частица), поскольку в ее основе лежало представление об атомистическом строении вещества. С корпускулярной теорией конкурировала теория теплорода, согласно которой тепловые процессы происходят благодаря невесомой жидкости, которая находится в «порах» материальных тел и может перетекать от одного объекта к другому. Чем больше в теле теплорода, тем выше его температура. Благодаря теории теплорода в физике появились понятия теплоемкости и теплопроводности
Классическая термодинамика сформулировала несколько принципов, или начал, которые вели к важным мировоззренческим выводам. Первое начало термодинамики основано на представлениях о том, что термодинамическая система обладает внутренней энергией теплового движения молекул и потенциальной энергией их взаимодействия.
При всех превращениях в термодинамической системе выполняется универсальный закон сохранения энергии. Согласно первому началу термодинамики количество теплоты, сообщенное телу, увеличивает его внутреннюю энергию и идет на совершение телом работы. Из этого принципа вытекает невозможность существования вечного двигателя.
Согласно второму началу термодинамики нельзя осуществить работу за счет энергии тел, находящихся в состоянии термодинамического равновесия, энтропия замкнутой системы возрастает, а ее максимальное значение достигается в состоянии теплового равновесия. Термодинамические процессы необратимы, а предоставленная самой себе система стремится к состоянию теплового равновесия, в котором температуры тел выравниваются. В системе, достигшей термодинамического равновесия, без внешнего вмешательства невозможны никакие процессы. Второе начало термодинамики часто формулируют иначе: тепло не может самопроизвольно перейти от холодного тела к горячему. Второе начало термодинамики называют также законом возрастания энтропии.
Распространение второго начала термодинамики на всю Вселенную, понимаемую как закрытая система, привело к созданию теории тепловой смерти, согласно которой все процессы в мире ведут к состоянию наибольшего равновесия, т. е. хаосу. Теория тепловой смерти Вселенной была разработана в середине XIX в. В. Томпсоном и Р. Клаузиусом, ее постулаты звучат следующим образом:
•энергия Вселенной постоянна;
• энтропия Вселенной, понимаемой как закрытая система, возрастает.
Смысл этих постулатов заключается в том, что со временем все виды энергии во Вселенной превратятся в тепловую, а последняя перестанет претерпевать качественные изменения и преобразовываться в другие формы. Наступившее состояние теплового равновесия будет означать смерть Вселенной. При этом общее количество энергии в мире останется тем же самым, т. е. универсальный закон сохранения энергии не будет нарушен. С точки зрения авторов теории тепловой смерти, наличие в нашей уже длительное время существующей Вселенной многообразных форм энергии и движения является необъяснимым фактом. Понятно, что выводы теории тепловой смерти Вселенной подводили к предположению о существовании таинственной силы, которая периодически выводит мир из состояния теплового равновесия, т. е. по сути дела к представлению о существовании Бога или других сверхъестественных сущностей, которые вновь и вновь творят Вселенную из хаоса.
Теория тепловой смерти сразу же после создания была подвергнута критике. В частности, появилась флуктуаци-онная теория Л. Больцмана, согласно которой Вселенная выводится из состояния равновесия с помощью внутренне присущих ей флуктуаций. Кроме того, критики говорили, что неправомерно распространять второе начало термодинамики на весь мир, а последний нельзя рассматривать как замкнутую систему с ограниченным числом элементов. Однако наиболее последовательным и полным опровержением теории тепловой смерти Вселенной стала синергети-ческая концепция И. Пригожина и Г. Хакена, созданная в конце XX в. (7.2).
Третьей составляющей классической физики является оптика. На протяжении двух столетий в оптике соперничали корпускулярная и волновая теории, объяснявшие природу световых явлений на разных основаниях. В XVII в. дискуссия развернулась между И. Ньютоном, который придерживался корпускулярной теории, и нидерландским ученым Х. Гюйгенсом – сторонником волновой теории. В соответствии с теорией И. Ньютона, свет – поток материальных частиц-корпускул, наделенных неизменными свойствами и взаимодействующих друг с другом по законам классической механики. Корпускулярная теория хорошо объясняла явления аберрации и дисперсии света, но испытывала трудности в объяснении явлений интерференции, дифракции и поляризации света. Согласно теории Х. Гюйгенса, свет представляет собой волну, распространение которой аналогично распространению волн на поверхности воды и подчиняется тем же законам. Особой средой для распространения световых волн Х. Гюйгенс считал эфир. Волновая теория, в отличие от корпускулярной, хорошо объясняла явления интерференции, дифракции и поляризации. Однако на протяжении XVIII в. большинство ученых придерживались корпускулярной теории И. Ньютона, несмотря на эвристическую силу и убедительность волновой теории Х. Гюйгенса. Немалую роль здесь сыграл непререкаемый авторитет, которым пользовался И. Ньютон в среде научного сообщества.
В 1818 г. с критикой корпускулярной теории выступил французский физик О. Френель. Его выводы убедительно говорили в пользу волновой теории. Предложенная О. Френелем волновая теория предполагала существование явления дифракции, которое должно было наблюдаться в виде светлого пятна в центре тени, отбрасываемой круглым экраном. Это рискованное предположение получило блестящее экспериментальное подтверждение, и волновая теория О. Френеля в начале XIX в. была признана научным сообществом. Окончательное подтверждение волновая теория получила после измерения скорости света в разных средах – воде и воздухе. Согласно корпускулярной теории скорость света в воде должна быть больше, чем скорость света в воздухе. Однако эксперимент показал, что скорость света в воде, т. е. в более плотной среде, оказалась меньше, чем скорость света в воздухе – менее плотной среде.
Недостатком волновой теории света было представление о среде – носителе световой волны. В XIX в. выдвигалась гипотеза, согласно которой таким носителем выступает светоносный эфир. Однако эта гипотеза сталкивалась с серьезной проблемой, разрешить которую не удавалось. Если предположить, что концепция светоносного эфира верна, то возникает вопрос, как эфир взаимодействует с веществом; в частности, увлекается ли эфир Землей при ее движении. Если эфир не увлекается движущимися телами, то его можно рассматривать в качестве абсолютной системы отсчета. Если же он взаимодействует с веществом, то это взаимодействие должно наблюдаться в оптических явлениях.
Недостатки волновой теории света привели к тому, что в конце XIX – начале XX в. физики вновь вернулись к корпускулярной теории, в научный обиход было введено представление об особых световых частицах – фотонах. Корпускулярные и волновые представления объединились только в концепции корпускулярно-волнового дуализма, т. е. уже в неклассической физике XX в. (3.3).
Четвертой составляющей классической физики является электродинамика, или теория электромагнитного поля.