Чтение онлайн

на главную - закладки

Жанры

Конец науки: Взгляд на ограниченность знания на закате Века Науки
Шрифт:

Участники сидели в прямоугольной комнате вокруг длинного стола, повторяющего ее контуры. На стене висела доска. Семинар открыл Касти, спросив: «Является ли реальный мир слишком сложным для нашего понимания?» Теоремы неполноты Курта Геделя, отметил Касти, подразумевали, что некоторые математические описания всегда будут неполными; какие-то аспекты мира всегда будут сопротивляться описанию.

Алан Туринг (Alan Turing)тоже показал, что многие математические предложения «нерешаемы», то есть в конечном счете нельзя определить, являются ли предложения истинными или ложными. Трауб попытался перефразировать вопрос Касти в более позитивном свете: можем ли мы

узнать то, что не можем знать? Можем ли мы доказать,что у науки есть границы, точно так же, как Гедель и Туринг доказали, что они есть у математики?

Единственным способом получения такого доказательства, объявил Атли Джексон (Atlee Jackson), физик из Университета Иллинойса, является формулировка теории науки. Чтобы показать, какой трудной будет эта задача, Джексон подскочил к доске и нацарапал чрезвычайно сложный график последовательности операций, который, предположительно, представлял науку. Когда слушатели тупо уставились на него, Джексон перешел к афоризмам. Чтобы определить, имеет ли наука границы, сказал он, надо определить науку, и как только вы определите науку, вы навяжете ей границу. С другой стороны, добавил он, «я не могу определить свою жену, но я могу ее узнать». Награжденный вежливыми смешками, Джексон отправился на свое место.

Теоретик антихаоса Стюарт Кауффман время от времени появлялся на семинаре, выступал с минилекциями в стиле дзэн-буддизма, а затем снова исчезал. Во время одного из появлений он напомнил нам, что само наше выживание зависит от нашей способности классифицировать мир. Но мир не появляется уже распакованным по предварительно подготовленным категориям. Мы можем классифицировать несколькими путями. Более того, чтобы классифицировать явления, мы должны отбросить часть информации. Кауффман закончил выступление заклинанием:

— Быть — это классифицировать и действовать, и все это означает выбрасывать вон информацию. Так что просто сам акт знания требует невежества.

Слушатели выглядели одновременно озадаченными и раздраженными.

Тогда несколько слов сказал Ральф Гомори (Ralph Gomory). Бывший вице-президент по вопросом исследований в «IBM», Гомори теперь возглавляет Фонд Слоана, филантропическую организацию, которая спонсирует относящиеся к науке проекты, включая семинар в Сайта-Фе. Когда Гомори слушал выступления других и даже выступал сам, его лицо выражало полное неверие. Он то склонял голову вперед, словно вглядывался в нечто в невидимый бинокль, то сводил на переносице густые черные брови и хмурил лоб.

Гомори объяснил, что он решил поддержать семинар, потому как давно считал, что образовательная система делает слишком большой упор на том, что известно, и слишком мало внимания уделяет тому, что неизвестно или даже не может быть познано. Большинство людей даже не осознают, как мало известно, сказал Гомори, потому что образовательная система представляет такой бесшовный, непротиворечивый взгляд на реальность. Все, что мы знаем о древних Персидских войнах, например, исходит из единственного источника — Геродота. Откуда нам знать, был ли Геродот точным репортером? Может, у него была неполная или неточная информация! Может, у него было предвзятое отношение или он что-то придумал! И мы этого никогда не узнаем!

В дальнейшем Гомори заметил, что марсианин, наблюдая за тем, как люди играют в шахматы, может быть способен точно вывести правила игры. Но может ли марсианин когда-либо быть уверенным, что это — истинные правила или единственные правила? Все с минуту размышляли над загадкой Гомори. Затем Кауффман стал рассуждать о том, как на нее мог бы ответить Виттгенштейн. Виттгенштейн стал бы «крайне страдать», сказал Кауффман, из-за того, что игроки в шахматы могут сделать ход — преднамеренно или нет, — который нарушает правила. В конце концов, как может марсианин сказать, был ли ход ошибочным или это результат другого правила?

— Вы меня понимаете? — спросил Кауффман у Гомори.

— Для начала я не знаю, кто такой Виттгенштейн, — раздраженно ответил Гомори.

Кауффман приподнял брови.

— Он был оченьизвестным философом.

Они с Гомори неотрывно смотрели друг на друга, пока кто-то не сказал:

— Давайте оставим Виттгенштейна в покое.

Патрик Саппс (Patrick Suppes), философ из Стэнфорда, все время прерывал дискуссию, чтобы указать, что Кант, обсуждая антиномии, предвидел практически все проблемы, с которыми борются участники семинара. В конце концов, когда Саппс привел еще одну антиномию, кто-кто крикнул:

— Не надо больше Канта!

Саппс запротестовал, что есть еще одна антиномия, которую он хочет упомянуть, действительно важная, но его коллеги не дали ему ничего сказать. (Несомненно, они не хотели, чтобы им напоминали, что в основном они просто заново утверждают, при помощи новомодного жаргона и метафор, доказательства, представленные давно, и не только Кантом, но даже древними греками.)

Чайтин, строча как пулемет, вернул разговор обратно к Геделю. Теоремы неполноты, утверждал Чайтин, это далеко не парадоксальный курьез с малым отношением к прогрессу математики или науки, как нравится считать некоторым математикам, а только одна часть множества глубоких проблем, поставленных математикой.

— Некоторые люди отвергают результаты Геделя как эксцентричные, патологические, происходящие из соотносящегося с самим собой парадокса, — сказал Чайтин. — Сам Гедель иногда беспокоился, что это был просто парадокс, созданный нашим использованием слов.

А теперь неполнота кажется такой естественной, что вы можете спросить, как мы, математики, вообще можем что-то сделать!

Работа самого Чайтина по алгоритмической теории информации предполагала, что, по мере того как математики будут обращаться к проблемам все увеличивающейся сложности, им придется продолжать пополнять свою базу аксиом; другими словами, чтобы знать больше, нужно больше предполагать. В результате, утверждал Чайтин, математике предстоит стать все более экспериментальной наукой с меньшими претензиями на абсолютную истину. Чайтин также установил, что так же, как и природа, математика состоит из фундаментальной неуверенности и беспорядочности. Он недавно нашел алгебраическое уравнение, которое может иметь бесконечное или конечное количество решений, в зависимости от значения переменных в уравнении.

— Обычно предполагается, что если люди думают, что нечто истинно, то это истинно в связи с чем-то.

В математике причина называется доказательством, а работа математика — это нахождение доказательств, причин, выводов из аксиом и принятых принципов. Они истинны случайно. И именно поэтому мы никогда не найдем истину: потому что нет истины, и нет причины, что эти доказательства истинны.

Чайтин также доказал, что никогда нельзя определить, является ли любая компьютерная программа самым возможно кратким методом решения проблемы; всегда возможно, что существуют более сжатые программы. (Это открытие подразумевает, как подтвердили и другие исследователи, что физики никогда не могут быть уверены в том, что нашли окончательную теорию, которая представляет самое компактное описание природы.) Чайтин явно наслаждался положением носителя таких ужасных известий. Он казался разрушителем, который крушит храм науки.

Поделиться:
Популярные книги

Виконт. Книга 2. Обретение силы

Юллем Евгений
2. Псевдоним `Испанец`
Фантастика:
боевая фантастика
попаданцы
рпг
7.10
рейтинг книги
Виконт. Книга 2. Обретение силы

Вираж бытия

Ланцов Михаил Алексеевич
1. Фрунзе
Фантастика:
героическая фантастика
попаданцы
альтернативная история
6.86
рейтинг книги
Вираж бытия

На границе империй. Том 10. Часть 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 3

Лорд Системы 14

Токсик Саша
14. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 14

Все еще не Герой!. Том 2

Довыдовский Кирилл Сергеевич
2. Путешествие Героя
Фантастика:
боевая фантастика
юмористическое фэнтези
городское фэнтези
рпг
5.00
рейтинг книги
Все еще не Герой!. Том 2

Кровь, золото и помидоры

Распопов Дмитрий Викторович
4. Венецианский купец
Фантастика:
альтернативная история
5.40
рейтинг книги
Кровь, золото и помидоры

Live-rpg. эволюция-5

Кронос Александр
5. Эволюция. Live-RPG
Фантастика:
боевая фантастика
5.69
рейтинг книги
Live-rpg. эволюция-5

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Граф Рысев

Леха
1. РОС: Граф Рысев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Граф Рысев

Сильнейший ученик. Том 2

Ткачев Андрей Юрьевич
2. Пробуждение крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 2

Не верь мне

Рам Янка
7. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Не верь мне

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Физрук: назад в СССР

Гуров Валерий Александрович
1. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук: назад в СССР

Истинная поневоле, или Сирота в Академии Драконов

Найт Алекс
3. Академия Драконов, или Девушки с секретом
Любовные романы:
любовно-фантастические романы
6.37
рейтинг книги
Истинная поневоле, или Сирота в Академии Драконов