Чтение онлайн

на главную

Жанры

Конструкции, или почему не ломаются вещи
Шрифт:

Рис. 2. б. Пусси ли тянет или нет, значения не имеет.

Закон Гука, или упругость твердых тел

Сила любого упругого тела находится в постоянном отношении с удлинением, поэтому если одна сила растягивает или изгибает его на определенную величину, то две силы будут изгибать его на две такие величины, три - на три и так далее. И это есть Правило, или Закон, Природы, в соответствии с которым и происходят все виды Восстанавливающего, или Упругого, движения.

Роберт Гук

Уже в 1676 г. Гук ясно понимал не только то, что сопротивление твердых тел силам веса или другим механическим нагрузкам создается посредством сил противодействия, но и то, что, во-первых, под механическим воздействием всякое твердое тело меняет свою форму, растягиваясь или сжимаясь, а во-вторых, именно это изменение формы и позволяет твердому телу создавать силу противодействия.

Когда мы на конец веревки подвешиваем кирпич, веревка удлиняется, и как раз это удлинение и позволяет веревке тянуть кирпич вверх и удерживать его от падения. Все материалы и конструкции, хотя и в очень различной степени, под действием нагрузки испытывают смещения (рис. 3).

Рис. 3. Все материалы и конструкции, хотя и в весьма различной степени, под действием нагрузки испытывают смещения. Теория упругости - это наука о соотношениях между нагрузками и перемещениями в твердых телах. Под действием веса обезьяны материал ветки растянут у ее верхней поверхности и сжат у нижней.

Важно осознать, что возникновение смещений в любой и каждой конструкции вследствие действия нагрузки является совершенно нормальным. Если эти смещения не слишком велики с точки зрения целей, которым служит конструкция, их возникновение - отнюдь не "дефект" в том или ином смысле, а важное свойство, без которого ни одна конструкция не могла бы работать. Теория упругости - это наука о соотношениях между силами и смещениями в материалах и конструкциях.

Хотя под действием веса или других механических сил все твердые тела в той или иной степени деформируются, величины смещений, которые встречаются на практике, могут изменяться в огромных пределах. Так, в растении, куске резины смещения, как правило, велики и их легко наблюдать, а в случаях, когда мы прикладываем обычные нагрузки к таким твердым веществам, как металл, бетон или кость, смещения на самом деле иногда оказываются очень малыми. Хотя такие перемещения часто бывают далеко за пределами возможностей невооруженного глаза, они существуют всегда и совершенно реальны, даже если для их измерения требуются специальные приборы. Если вы взберетесь на колокольню кафедрального собора, в результате добавления вашего веса он станет ниже, пусть на весьма малую величину, но действительно ниже. Каменная кладка на самом деле оказывается более гибкой, чем можно было бы предполагать. Вы можете убедиться в этом, посмотрев на четыре главные колонны, поддерживающие колокольню собора в Солсбери: все они заметно изогнуты (рис. 4).

Рис. 4. Каждая из четырех колонн, поддерживающих 120-метровую башню собора в Солсбери, заметно изогнута. Каменная кладка является намного более гибкой, чем обычно думают.

Далее Гук пришел к важной мысли, воспринять которую некоторым трудно даже сегодня. Он понял, что под действием нагрузки смещения, о которых мы говорили выше, возникают не только во всякой конструкции, но и в самом материале, из которого она сделана. Он "внутренне" растягивается или сжимается в каждой своей части в соответствующей пропорции вплоть до очень малых размеров - до молекулярных размеров, как мы знаем сегодня. Так, при деформации ветки или стальной пружины, например при сгибании их, атомы и молекулы, из которых состоит вещество, в зависимости от того, растянут или сжат материал как целое, должны отодвинуться друг от друга или, наоборот, приблизиться друг к другу.

Как мы также знаем сегодня, химические связи, соединяющие атомы один с другим и удерживающие таким образом вместе части твердого тела, являются очень прочными и жесткими. Так что, растягивая или сжимая материал как целое, мы "растягиваем" или "сжимаем" многие миллионы прочных химических связей. Но последние оказывают мощное сопротивление даже весьма малым деформациям, что и создает требуемые большие силы противодействия (рис. 5).

Рис. 5. Упрощенная модель межатомных связей в твердом теле при деформировании. а– исходное недеформированное состояние; б– при растяжении атомы удаляются друг от друга; в– при сжатии атомы сближаются.

Несмотря на то что Гук ничего не знал в деталях о химических связях и не очень-то многое знал об атомах и молекулах, он хорошо понимал, что в тонкой структуре вещества происходит нечто подобное, и вознамерился установить, в чем состоит природа макроскопической связи между силами и смещениями в твердых телах. Он проделал множество опытов с самыми разными, предметами из самых разных материалов различной геометрической формы. Здесь были и пружины, и куски проволоки, и балки. Последовательно подвешивая на них грузы и измеряя возникающие смещения, Гук показал, что в любой конструкции смещение обычно пропорционально нагрузке. Так, нагрузка в 100 кгс вызывает смещение, вдвое больше, чем нагрузка в 50 кгс, и т. д.

Кроме того, в пределах возможной для измерений Гука точности, которая не могла быть очень высокой, большинство твердых тел после снятия нагрузки, вызывавшей смещения, восстанавливало свою первоначальную форму. Многократно нагружая и разгружая такого типа конструкции, он установил, что после снятия нагрузок остаточных изменений их формы не происходит. Такое поведение называется упругим и является совершенно обычным. Слово "упругий" нередко ассоциируется с бельевой резинкой или изделиями из эластика, но в равной мере оно применимо и к стали, камню и кирпичу, к веществам биологического происхождения, таким, как дерево, кость или сухожилие. Именно в этом более широком смысле его обычно и употребляют инженеры. Между прочим, комариный писк порождает высокая упругость "пружинок", управляющих крылышками комара.

В то же время форма некоторых твердых и "почти твердых" тел, таких, как замазка, пластилин, полностью не восстанавливается, они остаются деформированными и после снятия нагрузки. Такое поведение называется пластическим. Этот термин относится не только к материалам вроде тех, которые идут на изготовление пепельниц, но также и к глине, к мягким металлам. Свойствами пластичности обладают, например, и сливочное масло, и овсяная каша, и патока. Многие из тех материалов, которые Гук считал "упругими", при более точных современных методах исследования таковыми не оказываются. но все же как широкое обобщение выводы Гука остаются справедливыми, именно они легли в основу современной теории упругости. Мысль о том, что большая часть материалов и конструкций - не только детали механизмов, мосты и здания, но также и деревья, животные, горы и скалы и "все сущее" вокруг - ведет себя подобно упругим пружинам, сегодня может показаться довольно простой и, возможно, вполне очевидной, однако, как видно из дневников Гука, такой прыжок по пути к истине стоил ему больших умственных усилий и многих сомнений. Возможно, это один из самых больших подвигов мысли в истории.

Обсудив свои идеи с сэром Кристофером Реном [3] в нескольких частных беседах, Гук в 1679 г. опубликовал результаты своих экспериментов. Статья называлась "Сила сопротивления, или упругость". Именно в ней впервые прозвучало знаменитое утверждение "ut tensio sic vis" - "каково растяжение, такова и сила". Вот уже триста лет этот прицип известен как закон Гука.

Как теория упругости застыла на месте

3

Кристофер Рен - выдающийся английский архитектор и ученый. В 1681-1683 гг.- президент Лондонского королевского общества.
Прим. nepeв.

Популярные книги

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Я – Орк. Том 5

Лисицин Евгений
5. Я — Орк
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 5

Бывшая жена драконьего военачальника

Найт Алекс
2. Мир Разлома
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бывшая жена драконьего военачальника

Ученик. Том 2

Губарев Алексей
2. Тай Фун
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
5.00
рейтинг книги
Ученик. Том 2

«Три звезды» миллиардера. Отель для новобрачных

Тоцка Тала
2. Три звезды
Любовные романы:
современные любовные романы
7.50
рейтинг книги
«Три звезды» миллиардера. Отель для новобрачных

Менталист. Коронация. Том 1

Еслер Андрей
6. Выиграть у времени
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
5.85
рейтинг книги
Менталист. Коронация. Том 1

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Идеальный мир для Социопата 5

Сапфир Олег
5. Социопат
Фантастика:
боевая фантастика
рпг
5.50
рейтинг книги
Идеальный мир для Социопата 5

Попаданка в деле, или Ваш любимый доктор

Марей Соня
1. Попаданка в деле, или Ваш любимый доктор
Фантастика:
фэнтези
5.50
рейтинг книги
Попаданка в деле, или Ваш любимый доктор

Мы пришли к вам с миром!

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
научная фантастика
альтернативная история
5.00
рейтинг книги
Мы пришли к вам с миром!

Я еще не барон

Дрейк Сириус
1. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я еще не барон

Вторая жизнь майора. Цикл

Сухинин Владимир Александрович
Вторая жизнь майора
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Вторая жизнь майора. Цикл

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Сыночек в награду. Подари мне любовь

Лесневская Вероника
1. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сыночек в награду. Подари мне любовь