Чтение онлайн

на главную

Жанры

Космические твердотопливные двигатели
Шрифт:

В отличие от двухосновного пороха, который представляет собой гомогенную, т. е. однородную, массу, новое топливо по своей структуре было гетерогенным, неоднородным. Поскольку данное топливо является механической смесью различных компонентов, то получило название смесевого. Синтетический каучук в нем выполняет не только роль горючего, но и связующего компонента (связки), удерживающего все содержимое топливной смеси в едином целом.

Смесевые топлива могут гореть устойчиво при давлениях всего лишь в несколько мегапаскалей, что позволяет значительно снизить массу конструкции РДТТ. Дополнительный выигрыш здесь получается за счет устранения ставших ненужными элементов крепления топливного заряда к корпусу; при этом конструкция РДТТ также упрощается. При горении заряда по внутренним каналам (что было предусмотрено конструкцией)

корпус РДТТ оказывается усиленным и защищенным от теплового воздействия благодаря топливному своду, воспринимающему в течение почти всего времени работы РДТТ нагрузки от давления и температуры продуктов сгорания.

В результате всего этого стало возможным создать РДТТ с высокими характеристиками (удельным импульсом и относительным содержанием топлива), способные надежно работать в течение продолжительного времени (десятки, а затем и сотни секунд). А благодаря новой технологии снаряжения РДТТ и большей безопасности компонентов смесевого топлива стало возможным изготовление зарядов, несоизмеримо б'oльших по размерам, чем прежде. В дальнейшем выяснилось, что смесевые топлива также обладают б'oльшими возможностями в отношении увеличения удельного импульса РДТТ.

Изобретение смесевого топлива вместе с разработкой новой технологии изготовления топливных зарядов произвело подлинную революцию в области РДТТ и всей ракетной техники. Именно эти твердотопливные двигатели нового типа позволили США осуществить вслед за нашей страной запуск первого своего ИСЗ (1958 г.) и вывести КА на межпланетную траекторию (1959 г.). В обоих этих случаях использовались четырехступенчатые РН («Джуно-1» и «Джуно-2» соответственно) с различным числом почти одинаковых маршевых РДТТ на второй, третьей и четвертой ступенях: связкой из 11 двигателей, связкой из 3 двигателей и одиночным двигателем. Все эти РДТТ работали по 6,5 с и развивали тягу около 7 кН каждый при удельном импульсе от 2160 до 2450 м/с. В стальных цилиндрических корпусах РДТТ диаметром 150 мм содержалось по 21–23 кг смесевого топлива с полисульфидным горючим-связкой; горение заряда происходило по поверхности осевого звездообразного канала. Эти скромные двигатели положили начало широкому применению РДТТ в космонавтике.

Дальнейший прогресс в области космических РДТТ был связан с разработкой более совершенных составов смесевых топлив, созданием конструкций реактивных сопел, способных работать в течение многих десятков секунд, применением новых конструкционных, теплоизоляционных и других материалов, усовершенствованием технологических процессов изготовления РДТТ и т. д. Рассмотрим теперь более подробно топлива и топливные заряды, а также реактивные сопла современных космических РДТТ.

Топлива и топливные заряды. Первыми нашли широкое применение в РДТТ смесевые топлива на основе перхлората калия и полисульфида. Значительное увеличение удельного импульса РДТТ произошло после того, как вместо перхлората калия стал применяться перхлорат аммония, а вместо полисульфидных — полиуретановые, а затем полибутадиеновые и другие каучуки, и в состав топлива было введено дополнительное горючее — порошкообразный алюминий. Почти все современные космические РДТТ содержат заряды, изготовленные из перхлората аммония, алюминия и полимеров бутадиена (СН2 = СН — СН = СН2).

Кроме этих основных компонентов, в топливо также — вводятся пластификаторы, отвердители, катализаторы и другие добавки, предназначенные для улучшения его физических, механических и технологических свойств, обеспечения полимеризации горючего-связующего, получения расчетных характеристик горения, увеличения допустимого срока хранения заряда и т. д. Ниже представлен характерный состав смесевого топлива, используемого в современных мощных РДТТ:

Перхлорат аммония69,6%
Горючее-связующее (сополимер бутадиена, акриловой кислоты и акрилонитрила)12,04%
Алюминий16,0%
Эпоксидный отвердитель1,96%
Окись железа (катализатор горения)0,4%
Итого100,00 %

В современных космических РДТТ сравнительно редко применяется и модифицированное двухосновное, или смесевое двухосновное, топливо. Из последнего названия следует, что по составу топливо это является промежуточным между обычным двухосновным топливом и смесевым. Действительно, оно содержит компоненты как того, так и другого топлив: обычно кристаллический перхлорат аммония (окислитель) и порошкообразный алюминий (горючее), связанные при помощи нитроцеллюлозно-нитроглицериновой смеси (в каждом из компонентов которой содержатся дополнительные окислитель и горючее). Вот типичный состав модифицированного двухосновного топлива:

Перхлорат аммония20,4%
Алюминий21,1%
Нитроцеллюлоза21,9%
Нитроглицерин29,0%
Триацетин (растворитель)5,1%
Стабилизаторы2,5%
Итого100,00 %

При той же плотности, что и смесевое полибутадиеновое топливо, модифицированное двухосновное характеризуется несколько большим удельным импульсом. Недостатками же его являются более высокая температура горения, большая стоимость, повышенная взрывоопасность (склонность к детонации). С целью увеличения удельного импульса как в смесевые, так и в модифицированные двухосновные топлива могут вводиться сильно взрывчатые кристаллические окислители: гексоген (CH2NNO2)3, октоген (CH2NNO2)4 и др. Их содержание ограничивается возрастающей детонационной опасностью топлива.

Типичный технологический процесс снаряжения РДТТ смесевым топливом выглядит следующим образом. Вначале производят подготовку внутренней поверхности корпуса (очистка, обезжиривание и т. д.) и приготавливают топливную массу. Затем на указанную поверхность наносят последовательно несколько синтетических полимерных материалов, образующих три слоя: адгезионный, теплозащитный и вновь адгезионный (рис. 3). Причем технологический процесс рассчитывается таким образом, чтобы вулканизация последнего слоя завершалась вместе с отвердеванием топливной смеси. Она приготовляется в смесителях, где исходные компоненты превращаются в густую, вязкую жидкость, Указанная операция и последующая заливка смеси в корпус РДТТ производятся преимущественно под вакуумом, чтобы удалить из смеси воздух и растворенные газы и предотвратить таким образом образование пустот в заряде.

Для заливки топлива корпус РДТТ помещается в специальную технологическую камеру, снабженную воздушными системами нагрева и вентиляции. Чтобы получить заряд с внутренними каналами, внутри корпуса монтируются оправки (стержни) соответствующей формы (которые впоследствии извлекаются). После заливки топлива в корпус РДТТ технологическая камера закрывается и выдерживается в течение 3–7 сут при температуре порядка 60 °C, что обеспечивает отверждение топливной массы. До истечения указанного срока камера может ненадолго открываться для нанесения на те или иные поверхности изготавливаемого заряда полимерного бронирующего покрытия, которое отвердевает вместе с топливной массой.

Готовый заряд имеет вид твердой резины или пластика. После охлаждения его подвергают тщательному контролю на сплошность и однородность массы, прочное сцепление топлива с корпусом и т. д. Трещины и поры в заряде, как и отслоения его от корпуса в отдельных местах, недопустимы, так как могут привести к нерасчетному увеличению тяги РДТТ с соответствующим уменьшением времени работы (вследствие увеличения горящей поверхности), прогарам корпуса и даже взрывам. Для проверки качества снаряженного таким образом корпуса используются рентгеновские, ультразвуковые и другие неразрушающие методы дефектоскопии.

Поделиться:
Популярные книги

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Смертник из рода Валевских. Книга 1

Маханенко Василий Михайлович
1. Смертник из рода Валевских
Фантастика:
фэнтези
рпг
аниме
5.40
рейтинг книги
Смертник из рода Валевских. Книга 1

Начальник милиции

Дамиров Рафаэль
1. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции

Счастливый торт Шарлотты

Гринерс Эва
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Счастливый торт Шарлотты

Я снова не князь! Книга XVII

Дрейк Сириус
17. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я снова не князь! Книга XVII

Вечный Данж VI

Матисов Павел
6. Вечный Данж
Фантастика:
фэнтези
7.40
рейтинг книги
Вечный Данж VI

Последний попаданец 3

Зубов Константин
3. Последний попаданец
Фантастика:
фэнтези
юмористическое фэнтези
рпг
5.00
рейтинг книги
Последний попаданец 3

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Возвышение Меркурия. Книга 12

Кронос Александр
12. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 12

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Адепт: Обучение. Каникулы [СИ]

Бубела Олег Николаевич
6. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.15
рейтинг книги
Адепт: Обучение. Каникулы [СИ]

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Мой любимый (не) медведь

Юнина Наталья
Любовные романы:
современные любовные романы
7.90
рейтинг книги
Мой любимый (не) медведь