Космос
Шрифт:
Рано или поздно кометы сталкиваются с планетами. Земля и ее спутница Луна должны подвергаться бомбардировке кометами и небольшими астероидами – мусором, оставшимся со времен образования Солнечной системы. Поскольку мелких объектов больше, вероятность столкновения с ними выше. Падение на Землю небольшого фрагмента кометы, подобного Тунгусскому метеориту, должно случаться примерно раз в тысячу лет. А вот столкновение с таким большим объектом, как комета Галлея, ядро которой, вероятно, достигает в поперечнике около двадцати километров [56] , может произойти примерно раз в миллиард лет.
56
По данным космических аппаратов «Бега» и «Джотто», ядро кометы Галлея имеет вытянутую форму и размеры 16x8 км. – Пер.
Когда небольшой ледяной обломок сталкивается с планетой или спутником, он не оставляет на поверхности крупных рубцов. Но если падающий объект относительно велик или состоит преимущественно из камня, то при столкновении происходит взрыв, после которого на поверхности возникает полусферическая воронка, называемая ударным кратером. При отсутствии процессов, стирающих или заносящих такие кратеры, они могут сохраняться миллиарды
Ударные кратеры встречаются не только на Луне. Во внутренней части Солнечной системы они обнаруживаются повсюду – от Меркурия, ближайшей к Солнцу планеты, до укрытой облаками Венеры и Марса с его крошечными спутниками Фобосом и Деймосом. Это так называемое семейство планет земного типа, более или менее похожих на Землю. У них твердая поверхность, железо-каменные недра, а плотность атмосферы меняется от почти полного вакуума до давления, в девяносто раз большего, чем на Земле. Они теснятся вокруг Солнца, источника света и тепла, как путники, жмущиеся к костру. Все планеты имеют возраст около 4,6 миллиарда лет. Подобно Луне, все они несут на себе следы эпохи катастрофических столкновений, произошедших в ранний период истории Солнечной системы. Выйдя за пределы орбиты Марса, мы попадаем в совершенно иные условия – в царство планет-гигантов или, как их еще называют, планет группы Юпитера. Это огромные миры, состоящие преимущественно из водорода и гелия с небольшими добавками богатых водородом газов, таких как метан, аммиак и водяные пары. Мы не видим у них твердой поверхности – только атмосферу и разноцветные облака. Это серьезные планеты, не шарики вроде Земли. Юпитер мог бы вместить в себя тысячи таких планет, как наша. Если комета или астероид упадет в атмосферу Юпитера, мы не увидим появления кратера – лишь кратковременный разрыв в облаках [57] . И тем не менее мы знаем, что и во внешних областях Солнечной системы многие миллиарды лет происходили столкновения, поскольку Юпитер имеет более десятка спутников", пять из которых исследовались с близкого расстояния космическими аппаратами «Вояджер». И здесь мы снова находим свидетельства былых катаклизмов. Когда будет изучена вся Солнечная система, мы, вероятно, найдем следы катастрофических столкновений во всех мирах, от Меркурия до Плутона, а также на всех спутниках, кометах и астероидах [58] .
57
В июле 1994 г. комета Шумейкеров-Леви 9 на глазах у астрономов всего мира врезалась в атмосферу Юпитера со скоростью около 60 км/с. Еще до столкновения ядро кометы распалось на два десятка крупных фрагментов размером от 1 до 10 км. К сожалению, обломки кометы входили в атмосферу на невидимой стороне планеты, но спустя 40-50 минут за счет суточного вращения Юпитера места падений становились доступны для наблюдения с Земли. Следы взрывов в виде огромных темных пятен и расходящихся от них кольцевых ударных волн (по диаметру сравнимых с Землей) на фоне юпитерианской атмосферы наблюдались во многих обсерваториях мира. – Пер.
58
В 2000 г. космический аппарат NEAR Shoemaker впервые вышел на орбиту вокруг астероида Эрос. В течение года он проводил детальные исследования и фотографирование астероида, а в феврале 2001 г. совершил на него управляемую посадку (хотя и не был спроектирован для этого). Предварительный анализ полученных снимков говорит о том, что большинство обнаруженных на астероиде каменных обломков были выброшены с одного участка его поверхности в результате столкновения с другим космическим объектом. – Пер.
На обращенной к нам стороне Луны в телескоп с Земли видно около 10 000 кратеров. Большинство из них расположены на древних лунных возвышенностях, а значит, возникли, когда подходил к концу период аккреции на Луну межпланетных обломков. В лунных морях – низменностях, которые вскоре после формирования Луны, вероятно, были затоплены лавой, скрывшей ранее существовавшие здесь кратеры, – насчитывается около тысячи кратеров поперечником больше километра. Таким образом, по очень грубой оценке, сейчас кратеры должны образовываться на Луне со скоростью 104 кратеров за 109 лет, то есть 105 лет на кратер – один кратер в сто тысяч лет. Несколько миллиардов лет назад межпланетного мусора могло быть больше, чем теперь. Так что нам, вероятно, придется ждать даже больше ста тысяч лет, чтобы увидеть, как на Луне образуется новый кратер. Поскольку площадь поверхности Земли больше, чем Луны, следует предположить, что столкновения, порождающие на поверхности нашей планеты кратеры диаметром около километра, будут происходить с интервалом около десяти тысяч лет. Возраст метеоритного кратера в Аризоне, имеющего примерно километр в поперечнике, составляет около 20-30 тысяч лет, что находится в согласии с нашими очень приближенными вычислениями.
Падение небольшой кометы или астероида на Луну способно породить мгновенную вспышку, достаточно яркую, чтобы ее было видно с Земли. Легко представить, как однажды ночью сто тысяч лет назад наши предки, праздно взиравшие на Луну, вдруг заметили над ее неосвещенной частью странное облако, неожиданно вспыхнувшее в солнечных лучах. Однако не стоит сильно рассчитывать на то, что подобное событие могло случиться в исторические времена. Шансы составляют один против ста. И тем не менее существует историческое свидетельство, которое, вероятно, описывает столкновение с Луной, замеченное с Земли невооруженным глазом. Вечером 25 июня 1178 года английские монахи сообщили о необычном событии, которое позднее, после того как очевидцы под присягой подтвердили правдивость своих слов, было занесено в хронику Гервасия Кентерберийского [59] , пользующегося репутацией добросовестного летописца политических и культурных событий своего времени. В хронике значится:
59
Гервасий Кентерберийский (Gervase of Canterbury, 1141 – ок. 1210) – английский летописец, составитель хроники, охватывающей период с 1100 по 1199 г.
Сразу после новолуния рога лунного серпа, как обычно в этой фазе, были обращены к востоку. Неожиданно верхний рог расщепился на два. Из промежутка между ними внезапно выскочил пылающий факел, который изрыгал огонь, горячие угли и искры.
Астрономы Деррал Малхолланд и Одайл Калам подсчитали, что в результате удара по лунной поверхности над ней может подняться облако пыли, по виду очень похожее на описание кентерберийских монахов.
Если столкновение произошло всего 800 лет назад, кратер должен оставаться видимым и поныне. Из-за отсутствия воздуха и воды эрозия на Луне протекает крайне медленно, так что даже маленькие кратеры возрастом несколько миллиардов лет сохранились относительно хорошо. По описанию Гервасия можно очень точно указать район на Луне, к которому относится свидетельство. Столкновения порождают на поверхности лучи – узкие длинные полосы тонкой пыли, выброшенной во время взрыва. Такие лучи сопутствуют самым молодым кратерам на Луне, например Аристарху, Копернику и Кеплеру. Но если лунные кратеры могут противостоять эрозии, то лучи, будучи исключительно тонкими, на это не способны. Со временем даже падающие на поверхность микрометеориты – тончайшая пыль, что оседает из космоса, – постепенно стирают и перекрывают лучи, приводя к их исчезновению. Таким образом, лучи являются отличительным признаком недавнего столкновения.
Специалист по метеоритам Джек Хартуанг обнаружил совсем свежий, очень молодой на вид кратер с хорошо различимой системой лучей в том самом районе Луны, на который указывали Кентерберийские монахи. Кратер назван Джордано Бруно в честь монаха-ученого, жившего в XVI веке и утверждавшего, что существует бесчисленное множество миров и многие из них обитаемы. За это и другие «преступления» он был сожжен заживо в 1600 году.
Подтверждение другого рода нашли Калам и Малхолланд. Когда объект врезается в Луну на высокой скорости, он заставляет ее слегка покачиваться. В конце концов эти колебания затухают, но не за такой короткий период, как восемь столетий. Такие вибрации можно фиксировать при помощи лазерных дальномеров. В ходе проекта«Аполлон» астронавты установили в нескольких точках Луны специальные зеркала, называемые лазерными ретрорефлекторами [60] . Когда лазерный луч, направленный с Земли, падает на такое зеркало и возвращается, время его движения туда и обратно можно измерить с потрясающей точностью. Умножив это время на скорость света, мы со столь же высокой точностью определим расстояние до Луны в момент измерения. Подобные измерения, проводившиеся на протяжении нескольких лет, выявили, что Луна покачивается с периодом около трех лет и амплитудой примерно три метра, что не противоречит гипотезе об образовании кратера Джордано Бруно менее тысячи лет назад [61] .
60
Ретрорефлектпор (световозвращающий отражатель) – устройство, которое отражает упавший на него свет в точности в обратном направлении, независимо от того, откуда пришел световой луч. – Пер.
61
На сегодня гипотезу об образовании кратера Джордано Бруно в XII в. можно считать окончательно опровергнутой. Во-первых, 25 июня 1178 г. Луна находилась еще слишком близко от Солнца, чтобы на ней вообще можно было что-то разглядеть, – прошло чуть больше суток после новолуния. Во-вторых, анализ, проведенный Паулем Уитерсом из Аризонского университета, показывает, что при столкновении, в результате которого на Луне образуется кратер размером 22 км, в сторону Земли должно было быть выброшено около 10 млн. т обломков. Это привело бы к чрезвычайно интенсивным метеорным дождям, которые наблюдались бы в течение недели начиная со следующего после столкновения дня. Ничего подобного не упоминается ни в одной хронике того времени. В-третьих, тот же Уитерс повторно проанализировал данные лазерной локации Луны и показал, что причина отмеченных небольших колебаний кроется в жидких недрах Луны. И наконец, по последним данным, полученным космическим аппаратом «Клементина», который картировал лунную поверхность, кратер Джордано Бруно хотя и является самым молодым кратером такого размера на Луне, однако существует более 800 лет (Новости журнала «Sky & Telescope» от 16 марта 2001 г.). – Пер.
Все эти доказательства являются косвенными и получены путем умозаключений. Как я уже сказал, шансы на то, что подобное событие могло произойти в исторические времена, очень малы. Однако приведенные свидетельства по крайней мере заставляют задуматься. Подобно Тунгусскому метеориту и Аризонскому кратеру, они подтверждают, что крупные, но некатастрофические столкновения происходили не только в ранний период истории Солнечной системы. А тот факт, что лишь несколько лунных кратеров имеют развитые системы лучей, указывает на то, что даже поверхность Луны до некоторой степени подвержена эрозии [62] . Изучая, как кратеры накладываются друг на друга и на другие элементы лунной стратиграфии, можно реконструировать последовательность столкновений и затоплений, в ряду которых образование кратера Бруно, вероятно, является самым последним событием.
62
На Марсе, где процессы эрозии протекают гораздо более интенсивно, хотя и присутствует множество кратеров, но, как и следовало ожидать, практически нет кратеров с лучами. – Авт.
Земля находится очень близко к Луне. Если Луна изрыта ударными кратерами, как же Земля избежала подобной участи? Почему метеоритные кратеры такая редкость? Может быть, кометы и астероиды избегают падать на населенные планеты? Вряд ли они столь снисходительны. Единственно возможное объяснение состоит в том, что ударные кратеры образуются примерно с одинаковой частотой на нашей планете и на ее спутнике, однако на лишенной воздуха и воды Луне они сохраняются практически вечно, тогда как на Земле эрозия медленно стирает их или скрывает под осадочными породами. Текущая вода, переносимый ветром песок и горообразование действуют медленно. Но на протяжении миллионов и миллиардов лет они способны полностью сгладить даже очень крупные рубцы.
Поверхность любого спутника или планеты подвергается внешним воздействиям, таким, например, как космические столкновения, и внутренним, скажем, землетрясениям; это могут быть кратковременные катастрофы, подобные извержениям вулканов, и мучительно медленно протекающие процессы, как, например, эрозия под действием переносимого ветром песка. Не существует универсального ответа на вопрос о том, какие из воздействий доминируют – внешние или внутренние, редкие, но разрушительные события или постоянные и малозаметные явления. На Луне господствуют внешние катастрофические события, на Земле – внутренние медленно протекающие процессы. Марс представляет собой промежуточный случай.