Чтение онлайн

на главную

Жанры

Краткая история химии. Развитие идей и представлений в химии.

Азимов Айзек

Шрифт:

Наиболее ценное свойство алюминия — его легкость (алюминий в 3 раза легче стали). Именно по этой причине он так широко используется в авиационной промышленности. В этих же целях потребляются и большие количества магния — еще более легкого металла. В 30-х годах были разработаны практически осуществимые методы извлечения магния из его солей, растворенных в морской воде, так что на сегодняшний день мы располагаем поистине неистощимым источником этого металла. (В настоящее время из морской воды получают и бром, и йод, и, конечно же, поваренную соль. Важной задачей, значение которой в будущем еще более возрастет, является получение пресной воды из океана.)

Многообещающими представляются также металлы, подобные титану. Титан — достаточно распространенный металл, отличается высокой устойчивостью

к действию кислот; он легче стали, но тяжелее алюминия. Обработанный соответствующим образом, титан является самым прочным из металлов с примерно такой же удельной массой.

Цирконий похож по свойствам на титан, но он менее распространен и тяжелее титана.

Перспективы использования титана весьма велики, особенно в связи с созданием сверхзвуковых самолетов. Самолеты, летающие со скоростью, в несколько раз превышающей скорость звука, даже в верхних разреженных слоях атмосферы испытывают значительное сопротивление вследствие трения воздуха. Их наружная обшивка должна выдерживать высокие температуры, и в качестве материала для такой обшивки особенно подходит титан, так как по сравнению с другими металлами он сохраняет высокую прочность при повышенных температурах.

Азот и фтор

Азот — основной компонент воздуха, на его долю приходится 78% всего объема. Большинство организмов используют его только в виде соединений, а содержащийся в воздухе молекулярный азот практически инертен и с трудом вступает в реакции.

Хотя воздух есть повсюду, в почве часто ощущается недостаток нитратов (наиболее распространенного типа соединений азота), который приходится восполнять, внося в почву органические или минеральные удобрения.

Соединения азота расходуются в огромных количествах: они используются в производстве минеральных удобрений, взрывчатых веществ и порохов, красителей и полупродуктов органического синтеза. Опасаясь нехватки природного сырья, химики начали изучать возможность использования азота воздуха. Этим вопросом занимался, в частности, немецкий химик Фриц Габер (1868—1934). Он выяснил, что азот вступает в реакцию с водородом при высоком давлении и высокой температуре в присутствии катализатора (железа), и поставил себе целью найти способ получения аммиака из азота воздуха и водорода. Превратить аммиак в нитраты было несложно. К 1908 г. Габер решил эту задачу.

Почти сразу же после начала первой мировой войны британский флот блокировал Германию, в результате чего в эту страну перестал поступать нитрат из Чили (наилучшее природное сырье). Между тем он был необходим для ведения войны, и вот немецкий химик Карл Бош (1874—1940) начинает работать над реакцией Габера, пытаясь создать промышленный способ получения аммиака, и к середине войны в Германии уже было налажено промышленное производство соединений азота. [106]

Совсем иначе обстояло дело с фтором. Этот элемент настолько активен, что существует только в виде соединений, поэтому попытки выделить его в свободном состоянии не приводили к успеху. И тем не менее еще со времен Лавуазье химики были уверены в существовании этого элемента. Так, Ньюлендс и Менделеев включили фтор в свои периодические таблицы (см. гл. 8), хотя к тому времени этот газ еще никто не получил. Конечно, при электролизе фтор отщепляется от содержащей его молекулы, однако в элементной форме он настолько активен, что сразу же вступает в реакцию и опять становится частью какого-то соединения. (Фтор — самый активный из всех химических элементов.)

[106] Биографии великих химиков. Пер. с нем./Под ред. Г В. Быкова, С. А. Погодина.— М.: Мир, 1981.

В XIX в. проблемой получения фтора занимались многие химики, начиная с Гемфри Дэви. Успех выпал на долю французского химика Анри Муассана (1852—1907). Муассан решил, что поскольку платина относится к числу тех немногих веществ, на которые фтор не действует, то не остается ничего другого, как изготовить, несмотря на дороговизну, все оборудование из платины. Более того, чтобы понизить активность фтора, он охладил реакционную смесь до -50°С. Поместив раствор фторида калия в плавиковой кислоте в специально изготовленный платиновый сосуд, Муассан пропустил через раствор электрический ток и достиг цели. Так в 1886 г. был наконец выделен бледно-желтый газ — фтор.

Однако шумную известность Муассану принесло не получение фтора, а совсем другая работа, которая, как выяснилось позднее, в сущности ни к чему не привела. Древесный уголь и алмаз являются разновидностями углерода; алмаз отличается от угля только более плотной упаковкой атомов. Следовательно, под действием высокого давления атомы в кристалле древесного угля могут перегруппироваться и образовать алмаз. И Муассан попытался получить таким образом драгоценный камень. Он растворил древесный уголь в расплавленном железе и вылил полученную массу в воду, считая, что при резком охлаждении углерод будет кристаллизоваться в виде алмаза.

Примерно в 1893 г. Муассан получил несколько мельчайших кристалликов черного цвета, которые он счел алмазами, и кристаллик хорошего алмаза длиной более 0.5 мм.

Казалось бы, Муассан достиг успеха. Однако ни он сам, ни его последователи не смогли повторить этот опыт. Как мы теперь знаем, в таких условиях алмаз образоваться не мог; скорее всего Муассан стал жертвой мистификации: кто-то из его ассистентов подбросил алмазы в железо.

Американский изобретатель Эдвард Гудрич Ачесон (1856—1931) также пытался получить алмаз из более обычных форм углерода. Он не достиг цели, но, нагревая углерод в присутствии глины при высоких температурах, получил чрезвычайно твердый карбид кремния, названный им карборундом. Полученное вещество оказалось превосходным абразивным материалом.

Для получения алмазов необходимы сверхвысокие давления, которые не были доступны в XIX в. Высокие давления в сочетании с высокими температурами позволяют атомам более или менее легко менять свои положения. Под действием высоких давлений различные элементы и соединения принимают новые формы, в которых атомы и молекулы упакованы необычайно плотно. Например, лед. становится значительно более плотным, чем вода, а температура его плавления превышает температуру кипения воды при обычных давлениях [107] . И в 1955 г. по методу Бриджмена были получены наконец первые синтетические алмазы.

[107] При снятии давления такие вещества, как правило, возвращаются в обычное состояние. Алмаз составляет исключение.

На границе органической и неорганической химии

В XX в. начала приоткрываться завеса над обширной областью, прилегающей к границе органической и неорганической химии [108] . В 1899 г. английский химик Фредерик Стенли Киппинг (1863—1949) занялся изучением органических соединений, содержащих кремний — самый распространенный после кислорода элемент земной коры. Киппинг посвятил изучению кремния более сорока лет и синтезировал множество органических соединений, содержащих один или несколько атомов кремния. Как выяснилось, можно получать бесконечно длинные цепи, состоящие из чередующихся атомов кремния и кислорода.

[108] А. Азимов лишь очень кратко касается развития одной из важнейших и в познавательном, и практическом смысле областей химии — химии элементоорганических соединений. Не упоминает он и о работах Виктора Гриньяра (1871 — 1935), получившего в 1900 г. магний-галогенорганические соединения (реактивы Гриньяра). Вклад советских ученых П. П. Шорыгина, А. Е. Арбузова, А. Н. Несмеянова, К. А. Кочешкова, К. А. Андрианова в развитие элементоорганической химии особенно велик. Достаточно упомянуть о синтезе кремнийорганических соединений, проведенном К. А. Андриановым, уже в 30-х годах запатентовавшим свои открытия. Не упоминает А. Азимов и об открытии органических соединений переходных металлов. Вместе с тем синтез ферроцена, дибензилхрома был своеобразной химической сенсацией и стимулировал многочисленные теоретические и экспериментальные исследования. См.: Соловьев Ю. И., Трифонов Д. Н., Шамин А. Н. История химии (примечание 13 к гл. 10).

Поскольку валентность кремния равна четырем, а в образовании связей с кислородом участвуют лишь две связи, две другие связи кремния в такой цепи остаются свободными, и к нему могут присоединяться различные органические группы. Во время второй мировой войны и особенно после окончания войны сильно возросло значение таких элементоорганических соединений, как силиконы, используемых в качестве смазок, гидравлических жидкостей, синтетических смол, водоотталкивающих средств и т. д.

Поделиться:
Популярные книги

Сильнейший ученик. Том 1

Ткачев Андрей Юрьевич
1. Пробуждение крови
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 1

Ваантан

Кораблев Родион
10. Другая сторона
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Ваантан

Не грози Дубровскому! Том Х

Панарин Антон
10. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том Х

Сила рода. Том 1 и Том 2

Вяч Павел
1. Претендент
Фантастика:
фэнтези
рпг
попаданцы
5.85
рейтинг книги
Сила рода. Том 1 и Том 2

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Кодекс Охотника. Книга XXV

Винокуров Юрий
25. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга XXV

Жандарм 3

Семин Никита
3. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 3

Я все еще граф. Книга IX

Дрейк Сириус
9. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я все еще граф. Книга IX

Мимик нового Мира 4

Северный Лис
3. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 4

Титан империи 3

Артемов Александр Александрович
3. Титан Империи
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Титан империи 3

Я до сих пор не князь. Книга XVI

Дрейк Сириус
16. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я до сих пор не князь. Книга XVI

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Охотник за головами

Вайс Александр
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Охотник за головами