Краткая история химии. Развитие идей и представлений в химии
Шрифт:
Валентность серы равна 2, хлора 1, калия 1 и кальция 2. Таким образом, в этой области периодической таблицы валентность меняется в следующей последовательности: 2, 1, 1, 2. Нуль в такой последовательности должен располагаться между двумя единицами; 2, 1, 0, 1, 2. Следовательно, место аргона между хлором и калием.
Однако, если принять периодическую таблицу как руководство, аргон не может существовать один. Он должен быть одним из представителей семейства инертных газов— элементов с нулевой валентностью. Столбец, занимаемый этими газами, должен располагаться между столбцами, занятыми галогенами (хлором, бромом и т. д.) и щелочными металлами (натрием, калием
Рамзай начал поиски. В 1895 г. он узнал, что в США из уранового минерала получены пробы газа — предположительно азота. Рамзай повторил эту работу и установил, что в спектре этого газа содержатся линии, которых нет ни в спектре азота, ни в спектре аргона, зато такие же линии наблюдал в солнечном спектре во время солнечного затмения 1868 г. французский астроном Пьер Жюль Сезар Жанссен (1824—1907). В то время английский астроном Джозеф Норман Локьер (1836—1920) приписал эти линии новому элементу, который он назвал гелием(от греческого — Солнце).
В свое время химики почти не обратили внимания на это сообщение: новый элемент был открыт на Солнце, да еще довольно новым, не вполне завоевавшим доверие методом. Однако работа Рамзая показала, что тот же самый элемент существует и на Земле. Рамзай сохранил за элементом название, данное ему Локьером. Так был открыт гелий — самый легкий из инертных газов, который стоит вслед за водородом — элементом с наименьшим атомным весом.
В 1898 г., осторожно нагревая жидкий воздух в поиске инертных газов, которые, как предполагал Рамзай, будут испаряться первыми, он обнаружил три новых газа. Рамзай назвал их неон(новый), криптон(скрытый) и ксенон(чуждый).
Сначала считалось, что инертные газы могут представлять интерес только как объект научного исследования и никакого практического применения они не найдут. Однако в своих исследованиях, начатых им в 1910 г., французский химик Жорж Клод (1870—1960) показал, что электрический ток, пропускаемый через некоторые газы, подобные неону, вызывает мягкое окрашенное свечение.
Практическое применение этого свойства хорошо известно: таким газом можно заполнять трубки, изогнутые в виде букв, слов, фигур и т. п., и уже в 40-х годах нашего столетия улицы больших городов заливал неоновый свет [74] .
[74] По материалам этой главы см. также: Макареня А. А. Д. И. Менделеев и физико-химические науки. Опыт научной биографии Д. И. Менделеева.— М.: Атомиздат, 1972; Трифонов Д. Н. Структура и границы периодической системы.— М.: Атомиздат, 1969. Б. М. Кедров, Д. Н. Трифонов. Закон периодичности и химические элементы. Открытия и хронология.— М.: Наука, 1969, 194 с; Соловьев Ю. И., Петров Л. П. Вильям Рамзай. 1852—1916.— М.: Наука, 1971, 239 с.
Глава 9
Физическая химия
Теплота
В XVII и XVIII вв. мир химии и мир физики разделяла четкая граница. Химия изучала процессы, сопровождающиеся изменением молекулярной структуры, в то время как физика изучала такие процессы, которые подобными изменениями не сопровождались.
В начале XIX столетия, когда Дэви (см. гл. 5) разрабатывал классификацию молекул неорганических соединений, а Бертло (см. гл. 5) — классификацию молекул органических соединений, физики изучали потоки теплоты, другими словами — термодинамику(от греческого — движение тепла).
Выдающихся успехов в этой области достигли английский физик Джеймс Прескотт Джоуль (1818—1889) и немецкие физики Юлиус Роберт Майер (1814—1878) и Герман Людвиг Фердинанд Гельмгольц (1821—1894). К 40-м годам прошлого столетия в результате проведенных ими работ стало ясно, что в процессе перехода одной формы энергии в другую энергия не создается и не исчезает. Этот принцип получил название закона сохранения энергии, или первого начала термодинамики.
В своих работах французский физик Никола Леонар Сади Карно (1796—1832), английский физик Уильям Томсон, впоследствии лорд Кельвин (1824—1907), и немецкий физик Рудольф Джулиус Эмануэль Клаузиус (1822—1888) развили механическую теорию теплоты. Было показано, что при самопроизвольном переходе теплоты от точки с более высокой температурой к точке с более низкой температурой работа производится только в случае существенной разности температур, ибо часть теплоты неизбежно рассеивается в окружающую среду. Этот вывод можно обобщить и распространить на любой вид энергии.
В 1850 г. Клаузиус, пытаясь найти соотношение между количеством теплоты в изолированной системе и абсолютной температурой этой системы, ввел термин энтропия. Он показал, что при любых самопроизвольных изменениях энергии энтропия системы должна увеличиваться. Этот принцип был назван вторым началом термодинамики.
Естественно, что такого рода открытия не могли не повлиять на развитие химии. Ведь в конечном итоге основными источниками теплоты в XIX в. (кроме Солнца) были химические реакции: горение дерева, угля и нефти. Химикам было также известно, что теплота выделяется и при других химических реакциях, например при нейтрализации кислот основаниями, и что практически все химические реакции сопровождаются тем или иным тепловым эффектом: выделением теплоты (а иногда и света) или поглощением теплоты (а иногда и света).
В 1840 г. после опубликования работ русского химика Германа Ивановича Гесса (1802—1850) [75] граница между миром физики и химии была разрушена, и началось сотрудничество двух наук. Тщательно измерив действительное количество теплоты, выделяемой в процессе химических реакций между определенными количествами веществ, Гесс показал, что количество теплоты, получаемой (или поглощаемой) при переходе от одного вещества к другому, всегда одинаково и не зависит от того, с помощью какой химической реакции или сколькими этапами осуществляется этот переход. Благодаря этому обобщению ( закон Гесса) Гесса иногда считают основателем термохимии(теплохимии).
[75] См.: Соловьев Ю. И. Герман Иванович Гесс.— М.: Изд-во АН СССР, 1962, 104 с.
Исходя из закона Гесса, представлялось вполне вероятным, что закон сохранения энергии равно применим и к химическим, и к физическим процессам. И действительно, дальнейшие обобщения показали, что законы термодинамики, вероятнее всего, проявляются в химии точно так же, как и в физике.
Это направление в экспериментах и в теории привело к выводу, что определенным химическим реакциям, как и физическим процессам, присуще свойственное только им самопроизвольное направление, приводящее к увеличению энтропии. Однако энтропия представляет собой величину, трудную для непосредственного измерения, поэтому химики начали искать другой, более простой критерий.