Краткая история химии. Развитие идей и представлений в химии
Шрифт:
Лишь в 1855 г. французский химик Анри Этьен Сен-Клер Девилль (1818—1881) разработал приемлемый способ получения достаточных количеств довольно чистого алюминия. Однако и после этого стоимость его намного превышала стоимость стали; так, достаточно сказать, что из алюминия были сделаны такие «престижные» предметы, как погремушка сыну Наполеона III и головной убор статуи Вашингтона.
В 1886 г. молодой американский студент-химик Чарльз Мартин Холл (1863—1914), услышав от своего учителя, что тот, кто откроет дешевый способ получения алюминия, несомненно, разбогатеет и прославится, решил заняться этой проблемой. Работая в домашней лаборатории, он открыл, что оксид алюминия (глинозем) можно растворить в расплавленном минерале криолите. А получив раствор оксида, можно путем электролиза выделить и сам алюминий. В том же году французский металлург Поль Луи Туссен Эру (1863—1914) разработал по сути тот же метод получения
Наиболее ценное свойство алюминия — его легкость (алюминий в 3 раза легче стали). Именно по этой причине он так широко используется в авиационной промышленности. В этих же целях потребляются и большие количества магния— еще более легкого металла. В 30-х годах были разработаны практически осуществимые методы извлечения магния из его солей, растворенных в морской воде, так что на сегодняшний день мы располагаем поистине неистощимым источником этого металла. (В настоящее время из морской воды получают и бром, и йод, и, конечно же, поваренную соль. Важной задачей, значение которой в будущем еще более возрастет, является получение пресной воды из океана.)
Многообещающими представляются также металлы, подобные титану. Титан — достаточно распространенный металл, отличается высокой устойчивостью к действию кислот; он легче стали, но тяжелее алюминия. Обработанный соответствующим образом, титан является самым прочным из металлов с примерно такой же удельной массой.
Цирконийпохож по свойствам на титан, но он менее распространен и тяжелее титана.
Перспективы использования титана весьма велики, особенно в связи с созданием сверхзвуковых самолетов. Самолеты, летающие со скоростью, в несколько раз превышающей скорость звука, даже в верхних разреженных слоях атмосферы испытывают значительное сопротивление вследствие трения воздуха. Их наружная обшивка должна выдерживать высокие температуры, и в качестве материала для такой обшивки особенно подходит титан, так как по сравнению с другими металлами он сохраняет высокую прочность при повышенных температурах.
Азот и фтор
Азот — основной компонент воздуха, на его долю приходится 78% всего объема. Большинство организмов используют его только в виде соединений, а содержащийся в воздухе молекулярный азот практически инертен и с трудом вступает в реакции.
Хотя воздух есть повсюду, в почве часто ощущается недостаток нитратов (наиболее распространенного типа соединений азота), который приходится восполнять, внося в почву органические или минеральные удобрения.
Соединения азота расходуются в огромных количествах: они используются в производстве минеральных удобрений, взрывчатых веществ и порохов, красителей и полупродуктов органического синтеза. Опасаясь нехватки природного сырья, химики начали изучать возможность использования азота воздуха. Этим вопросом занимался, в частности, немецкий химик Фриц Габер (1868—1934). Он выяснил, что азот вступает в реакцию с водородом при высоком давлении и высокой температуре в присутствии катализатора (железа), и поставил себе целью найти способ получения аммиака из азота воздуха и водорода. Превратить аммиак в нитраты было несложно. К 1908 г. Габер решил эту задачу.
Почти сразу же после начала первой мировой войны британский флот блокировал Германию, в результате чего в эту страну перестал поступать нитрат из Чили (наилучшее природное сырье). Между тем он был необходим для ведения войны, и вот немецкий химик Карл Бош (1874—1940) начинает работать над реакцией Габера, пытаясь создать промышленный способ получения аммиака, и к середине войны в Германии уже было налажено промышленное производство соединений азота. [106]
Совсем иначе обстояло дело с фтором. Этот элемент настолько активен, что существует только в виде соединений, поэтому попытки выделить его в свободном состоянии не приводили к успеху. И тем не менее еще со времен Лавуазье химики были уверены в существовании этого элемента. Так, Ньюлендс и Менделеев включили фтор в свои периодические таблицы (см. гл. 8), хотя к тому времени этот газ еще никто не получил. Конечно, при электролизе фтор отщепляется от содержащей его молекулы, однако в элементной форме он настолько активен, что сразу же вступает в реакцию и опять становится частью какого-то соединения. (Фтор — самый активный из всех химических элементов.)
[106] Биографии великих химиков. Пер. с нем./Под ред. Г В. Быкова, С. А. Погодина.— М.: Мир, 1981.
В XIX
Однако шумную известность Муассану принесло не получение фтора, а совсем другая работа, которая, как выяснилось позднее, в сущности ни к чему не привела. Древесный уголь и алмаз являются разновидностями углерода; алмаз отличается от угля только более плотной упаковкой атомов. Следовательно, под действием высокого давления атомы в кристалле древесного угля могут перегруппироваться и образовать алмаз. И Муассан попытался получить таким образом драгоценный камень. Он растворил древесный уголь в расплавленном железе и вылил полученную массу в воду, считая, что при резком охлаждении углерод будет кристаллизоваться в виде алмаза.
Примерно в 1893 г. Муассан получил несколько мельчайших кристалликов черного цвета, которые он счел алмазами, и кристаллик хорошего алмаза длиной более 0.5 мм.
Казалось бы, Муассан достиг успеха. Однако ни он сам, ни его последователи не смогли повторить этот опыт. Как мы теперь знаем, в таких условиях алмаз образоваться не мог; скорее всего Муассан стал жертвой мистификации: кто-то из его ассистентов подбросил алмазы в железо.
Американский изобретатель Эдвард Гудрич Ачесон (1856—1931) также пытался получить алмаз из более обычных форм углерода. Он не достиг цели, но, нагревая углерод в присутствии глины при высоких температурах, получил чрезвычайно твердый карбид кремния, названный им карборундом. Полученное вещество оказалось превосходным абразивным материалом.
Для получения алмазов необходимы сверхвысокие давления, которые не были доступны в XIX в. Высокие давления в сочетании с высокими температурами позволяют атомам более или менее легко менять свои положения. Под действием высоких давлений различные элементы и соединения принимают новые формы, в которых атомы и молекулы упакованы необычайно плотно. Например, лед. становится значительно более плотным, чем вода, а температура его плавления превышает температуру кипения воды при обычных давлениях [107] . И в 1955 г. по методу Бриджмена были получены наконец первые синтетические алмазы.
[107] При снятии давления такие вещества, как правило, возвращаются в обычное состояние. Алмаз составляет исключение.
На границе органической и неорганической химии
В XX в. начала приоткрываться завеса над обширной областью, прилегающей к границе органической и неорганической химии [108] . В 1899 г. английский химик Фредерик Стенли Киппинг (1863—1949) занялся изучением органических соединений, содержащих кремний — самый распространенный после кислорода элемент земной коры. Киппинг посвятил изучению кремния более сорока лет и синтезировал множество органических соединений, содержащих один или несколько атомов кремния. Как выяснилось, можно получать бесконечно длинные цепи, состоящие из чередующихся атомов кремния и кислорода.
[108] А. Азимов лишь очень кратко касается развития одной из важнейших и в познавательном, и практическом смысле областей химии — химии элементоорганических соединений. Не упоминает он и о работах Виктора Гриньяра (1871 — 1935), получившего в 1900 г. магний-галогенорганические соединения (реактивы Гриньяра). Вклад советских ученых П. П. Шорыгина, А. Е. Арбузова, А. Н. Несмеянова, К. А. Кочешкова, К. А. Андрианова в развитие элементоорганической химии особенно велик. Достаточно упомянуть о синтезе кремнийорганических соединений, проведенном К. А. Андриановым, уже в 30-х годах запатентовавшим свои открытия. Не упоминает А. Азимов и об открытии органических соединений переходных металлов. Вместе с тем синтез ферроцена, дибензилхрома был своеобразной химической сенсацией и стимулировал многочисленные теоретические и экспериментальные исследования. См.: Соловьев Ю. И., Трифонов Д. Н., Шамин А. Н. История химии (примечание 13 к гл. 10).