Краткая история времени. От Большого взрыва до черных дыр
Шрифт:
Глава вторая. Пространство и время
Современные представления о движении тел восходят к учениям Галилея и Ньютона. До того люди верили Аристотелю. Он постулировал, что естественное состояние тела – состояние покоя и что тело движется, только если его принуждает к тому сила или импульс. Из этого следовало, что более тяжелое тело должно падать быстрее, чем легкое, поскольку оно испытывает более сильное притяжение, которое влечет его к Земле.
Кроме того, в аристотелевской традиции считалось, что все управляющие Вселенной законы можно вывести чисто умозрительным путем, не обращаясь к наблюдениям. Так, в частности, никто до Галилея не счел нужным проверить, действительно ли тела разного веса падают с разной скоростью. Считают, что Галилей доказал ложность системы Аристотеля, бросая разнообразные предметы с падающей Пизанской башни в Италии. В действительности же все было, скорее всего, не так… Но Галилей проделал другой, эквивалентный эксперимент: он пускал шары разного веса по ровной наклонной поверхности. Эта ситуация аналогична той, когда тяжелые тела падают
Ньютон использовал измерения Галилея в качестве основы для своих законов движения. В опытах Галилея, когда тело скатывалось вниз по наклонной плоскости, на него всегда воздействовала одна и та же сила (его вес), результатом чего было постоянное ускорение тела. Отсюда следовало, что в реальности воздействие силы на тело всегда приводит к изменению скорости его движения, а не только к его перемещению, как считалось ранее. Это также означало, что всякий раз, когда на тело не воздействует какая-либо сила, оно продолжает двигаться по прямой с постоянной скоростью. Эта идея была впервые ясно сформулирована в 1687 году в «Математических началах» Ньютона. Она стала известна как первый закон Ньютона. То, что происходит с телом, когда на него действует сила, определяется вторым законом Ньютона: тело ускоряется (то есть его скорость изменяется) со скоростью, пропорциональной приложенной силе. (Например, в два раза большая сила приводит к аналогичному росту ускорения.) Ускорение тем меньше, чем больше масса (или количество материи) тела. (Одно и то же усилие, действующее на тело, масса которого в два раза больше, произведет в два раза меньшее ускорение.) Привычный пример – это автомобиль: чем мощнее двигатель, тем больше ускорение, но чем тяжелее автомобиль, тем меньше ускорение при том же двигателе. Ньютон дополнил сформулированные им законы движения открытым им же законом всемирного тяготения, который гласит, что любое тело притягивается к любому другому телу с силой, пропорциональной массе каждого из тел. Таким образом, сила взаимного притяжения двух тел удвоится, если удвоить массу одного из тел (например тела А). Это вполне ожидаемо, потому что тело А можно представить состоящим из двух тел исходной массы. Каждое из этих тел должно притягивать тело B с первоначальной силой, и, таким образом, общая сила притяжения тел А и В будет в два раза больше первоначальной силы. И если масса одного из тел в два, а масса второго тела – в три раза больше соответствующей первоначальной массы, то сила взаимного притяжения окажется в шесть раз больше первоначальной. Теперь понятно, почему все тела падают с одинаковой скоростью: тело, весящее в два раза больше, испытывает в два раза большую силу тяготения. Но его масса в два раза больше, и следовательно, согласно второму закону Ньютона, эти два эффекта полностью компенсируют друг друга, и поэтому ускорение будет одинаковым во всех случаях.
Закон тяготения Ньютона также гласит, что чем дальше друг от друга тела, тем меньше сила их взаимного притяжения. Согласно этому закону сила тяготения звезды составляет в точности одну четверть силы тяготения такой же звезды на расстоянии вдвое меньше. Этот закон очень точно предсказывает орбиты Земли, Луны и планет. Если бы сила притяжения звезды уменьшалась с расстоянием медленнее или быстрее, то орбиты планет не были бы эллиптическими. Планеты бы двигались по спирали, приближаясь к Солнцу или удаляясь от него.
Существенное отличие идей Аристотеля с одной стороны и Галилея и Ньютона – с другой состоит в том, что Аристотель считал предпочтительным состояние покоя. Именно в нем должно находиться любое тело, не возмущаемое какой-либо силой или импульсом. В частности, Аристотель считал, что Земля находится в состоянии покоя. Но из законов Ньютона следует, что единого стандарта покоя не существует. Можно с одинаковым основанием сказать, что тело А находится в состоянии покоя, а тело В движется с постоянной скоростью относительно тела А, или же что тело В находится в состоянии покоя, а движется тело А. Например, если на время пренебречь вращением Земли и ее движением по орбите вокруг Солнца, то можно считать, что Земля находится в состоянии покоя, а поезд на ее поверхности движется на север со скоростью сто пятьдесят километров в час. Но можно также считать поезд находящимся в состоянии покоя, а Землю движущейся на юг со скоростью сто пятьдесят километров в час. При проведении опытов с движущимися телами в поезде все законы Ньютона тоже выполняются. Если сыграть в настольный теннис в железнодорожном вагоне, то окажется, что мячик ведет себя точно так же, как при игре в пинг-понг на столе, стоящем на земле рядом с путями. Поэтому нельзя с полной уверенностью утверждать, что движется: Земля или поезд.
Отсутствие абсолютного стандарта покоя означало, что невозможно определить, случились ли произошедшие в разное время два события в одном и том же месте в пространстве. Например, предположим, что наш шарик для пинг-понга в поезде отскакивает вверх и падает вниз, ударяясь о стол дважды в одном и том же месте с интервалом в одну секунду. Наблюдателю, который находится у железнодорожной колеи, будет казаться, что расстояние между двумя отскоками составляет около 40 метров, потому что именно это расстояние поезд пройдет за означенное время. Следовательно, отсутствие абсолютной системы отсчета означает – вопреки представлениям Аристотеля – невозможность соотнести событие с абсолютным положением в пространстве. Пространственные координаты событий и расстояние между ними будут разными для человека, едущего в поезде, и наблюдателя, стоящего рядом с железнодорожными путями, и при этом нет никаких оснований предпочесть наблюдения одного наблюдениям другого.
Ньютона очень беспокоило отсутствие абсолютного положения или, как он формулировал, абсолютного пространства, поскольку это противоречило его идее об абсолютном Боге. Ученый отказывался признавать отсутствие абсолютного пространства, несмотря на то, что оно вытекало из сформулированных им законов. Многие ожесточенно критиковали его за иррациональную веру, и, пожалуй, самым суровым его критиком был епископ Беркли – философ, считавший все материальные объекты, а также пространство и время всего лишь иллюзией. Когда знаменитому доктору Джонсону рассказали о взглядах Беркли, он закричал: «Я отвергаю это!» – и ударил ногой большой камень.
Аристотель и Ньютон верили в существование абсолютного времени. То есть они считали, что можно однозначно измерить промежуток времени между двумя событиями. Подразумевалось, что это значение будет безусловным и не будет зависеть от того, кто его измеряет. Конечно, при условии, что наблюдатель использует хорошие часы. В их представлении время было полностью отделено от пространства и независимо от него. Большинство людей считают это само собой разумеющимся, хотя нам пришлось пересмотреть взгляды на пространство и время. Привычные представления о них прекрасно работают, если речь идет о сравнительно медлительных объектах, например яблоках и планетах. В то же время они оказываются совершенно неприменимыми к объектам, которые движутся со скоростью, близкой к скорости света или равной ей.
Датский астроном Оле Кристенсен Рёмер в 1676 году впервые установил, что свет распространяется с конечной, хотя и очень большой скоростью. Он обнаружил, что спутники Юпитера исчезают из поля зрения за диском планеты через разные интервалы времени, а не идентичные, как этого следовало ожидать, если бы они двигались равномерно. Расстояние между Юпитером и Землей меняется по мере движения этих планет вокруг Солнца. Рёмер обнаружил, что затмения спутников Юпитером наблюдаются тем позже, чем дальше Юпитер находится от Земли, и сделал вывод, что причина в том, что свету от спутников приходится преодолевать большее расстояние, чтобы достичь нас. Правда, рассчитанные им изменения расстояния от Земли до Юпитера были не очень точными, а потому он оценил скорость света примерно в 220 000 километров в секунду – против современного значения в 300 000 километров в секунду. И тем не менее результат Рёмера, которому удалось не только доказать конечность скорости света, но и измерить ее, был замечательным достижением, особенно учитывая, что оно явилось за 11 лет до выхода в свет «Математических начал» Ньютона.
Полноценная теория распространения света была создана только в 1865 году, когда британский физик Джеймс Клерк Максвелл смог объединить частные теории электрических и магнитных сил. Из уравнений Максвелла следовала возможность существования волнообразных возмущений электромагнитного поля, а также то, что эти возмущения должны распространяться с постоянной скоростью подобно волнам на поверхности пруда. Волны с длиной (то есть расстоянием между двумя последовательными гребнями) более одного метра сейчас называют радиоволнами. Сегодня мы знаем, что более короткие волны называют СВЧ-волнами (несколько сантиметров) или инфракрасным излучением (если длина волны составляет более одной десятитысячной сантиметра). Длина волн видимого света составляет от сорока до восьмидесяти миллионных сантиметра. Излучение с еще меньшими длинами волн известно как ультрафиолетовое, рентгеновское и гамма-излучение.
Из теории Максвелла следовало, что радиоволны и волны видимого света должны распространяться с определенной фиксированной скоростью. Но теория Ньютона рассталась с представлением об абсолютном покое, и поэтому, если свет распространяется с фиксированной скоростью, надо указать, относительно чего следует измерять эту скорость. Поэтому выдвинули предположение о существовании некоей субстанции, названной эфиром, которая пронизывает все вокруг и даже вакуум «пустого» пространства. Считалось, что волны света распространяются в эфире подобно тому, как звуковые волны распространяются в воздухе, и следовательно, скорость волн света надо измерять относительно эфира. При этом, с точки зрения разных наблюдателей, движущихся относительно эфира, воспринимаемый ими свет распространяется с разной скоростью, но скорость распространения света относительно эфира всегда постоянна. В частности, по мере движения Земли вокруг Солнца через эфир скорость света, измеренная в направлении движения Земли сквозь эфир (то есть когда мы движемся в направлении источника света), должна быть выше, чем скорость света в направлении, перпендикулярном движению (то есть когда мы не движемся к источнику).