Кристаллы
Шрифт:
Повторяющиеся группы атомов (или отдельные атомы) укладываются друг по отношению к другу внутри элементарной ячейки кристалла вполне определённым образом – одним из 230 способов Фёдорова.
Вершины ячейки кристаллографы называют узлами. Обычно их удобнее всего размещать в центрах атомов кристалла. При этом, конечно, не все атомы попадают в вершины ячеек. В самых сложных кристаллах элементарная ячейка будет косоугольным параллелепипедом. В более симметричных кристаллах ячейка имеет форму, например, прямоугольного параллелепипеда. Наиболее симметричные кристаллы – кубические, их ячейка имеет форму куба.
Если изобразить в пространстве строение кристалла, отмечая
Рис. 17. Модель кристаллической решётки.
Основная особенность кристаллической структуры заключается в её повторяемости через строго одинаковые расстояния. Предположим, что мы сделали прогулку вдоль одной из проволочек рисунка 17. Выйдя из узла и продвигаясь вдоль проволоки, мы попадали бы всё в новые «местности». Но наши новые впечатления продолжались бы лишь до следующего узла. Начиная же от него, мы увидели бы полное повторение «пейзажа», уже знакомого нам по путешествию от первого до второго узла.
Двигаясь в разных направлениях внутри кристалла, мы наблюдали бы разные картины, но во всех случаях, пройдя некоторое расстояние, мы попадали бы в места, неотличимые от уже пройденных, и это повторялось бы всё время через равные промежутки.
Размеры ячейки могут быть весьма различными. Наименьшие расстояния между соседними узлами встречаются у простейших кристаллов, построенных из атомов одного сорта, наибольшие – у сложных кристаллов белка. Расстояния колеблются от 2–3 до нескольких сот ангстремов (стомиллионных долей сантиметра), в последнем случае соответствуя уже размерам, видимым в электронный микроскоп.
Кристаллические решётки очень разнообразны. Однако свойства, общие для всех кристаллов, безупречно объясняются решетчатым строением кристаллов. Прежде всего, нетрудно понять, что идеально плоские грани – это плоскости, проходящие через узлы, в которых сидят атомы. Но узловых плоскостей можно провести сколько угодно по самым различным направлениям. Какие же из этих узловых плоскостей ограничивают выросший кристалл? Обратим внимание прежде всего на следующее обстоятельство: разные узловые плоскости и линии заполнены узлами не одинаково плотно. Опыт показывает, что кристалл огранён плоскостями, которые гуще всего усеяны узлами, плоскости же пересекаются по рёбрам, в свою очередь, наиболее густо заселённым узлами.
Рисунок 18 даёт вид кристаллической решётки перпендикулярно к её грани; проведены следы некоторых узловых плоскостей, перпендикулярных чертежу. Из сказанного ясно, что у кристалла могут развиться грани, параллельные узловым плоскостям I, и не будет граней, параллельных редко усеянным узлами плоскостям II.
Рис. 18. Схема расположения некоторых узловых плоскостей в кристаллической решётке; плоскости I могут служить внешними гранями, II – нет.
Внешняя симметрия кристалла также определяется типом его решётки. Наиболее симметричными бывают кристаллы с кубической элементарной ячейкой. К высокосимметричным относятся также кристаллы с ячейкой в виде прямой призмы, у которой в основании лежит квадрат или ромб с углом 60°.
Облечём теперь скелеты-решётки плотью, перейдём к рассмотрению упаковки частиц в кристаллах.
7. Биллиардные шары как строительный материал
Мы знаем, что «строительный материал» кристаллов – атомы имеют очень сложное собственное строение: на различных расстояниях от положительно заряженного ядра, состоящего в свою очередь из ряда более мелких частиц, вращаются электроны, несущие отрицательный заряд [4] .
Однако в очень многих случаях – позднее мы скажем, в каких именно, – для воспроизведения расположения атомов в кристалле их можно уподобить шарам. Такое представление об атомах отнюдь не отражает всей их сложной природы, но правильно передаёт одно важное обстоятельство, а именно: рентгеновские исследования структуры кристаллов приводят нас к мысли, что кристаллы строятся по принципу наиболее плотной упаковки шаров.
4
Подробнее о строении атома см., например, Г.А. Зисман «Мир атома», «Научно-популярная библиотека».
Для того чтобы ясно представить себе сущность этого принципа, возьмём большое количество биллиардных шаров и начнём укладывать их, стремясь создать наиболее плотную упаковку. Прежде всего составим плотный слой – он выглядит так, как биллиардные шары, собранные «треугольником» перед началом игры (рис. 19).
Рис. 19. Один плотный слой шаров.
Отметим, что шар внутри треугольника имеет шесть соприкасающихся с ним соседей. Ясно, что нет другого способа составить плотнейший слой из шаров.
Будем продолжать укладку наложением слоёв друг на друга. Если бы мы поместили шары следующего слоя непосредственно над шарами первого слоя, то такая упаковка была бы неплотной. Желая разместить в некотором объёме наибольшее число шаров, мы должны положить шары второго слоя в лунки нижележащего. Обратим внимание на то, что заполнить все лунки шарами того же самого размера нельзя: лунки заполняются через одну. Отметим на чертеже чёрным лунки первого слоя, оставшиеся пустыми (рис. 20). Плотная упаковка из двух слоёв также существует лишь одна: мы можем, конечно, заполнить шарами второго слоя все «чёрные» лунки, оставив «белые» пустыми, но от этого вид упаковки не изменится. Однако положение меняется, когда мы переходим к третьему этажу.
Рис. 20. Два плотных слоя шаров.
Чтобы получить плотнейшую упаковку, мы должны укладывать шары третьего слоя в лунки второго. Но при этом шары третьего слоя могут быть размещены двумя способами: либо так, чтобы центры этих шаров лежали над центрами шаров первого слоя, либо так, чтобы их центры лежали над «чёрными» лунками.
Наши две трёхэтажные постройки обладают одинаковой плотностью упаковки, но существенно отличаются одна от другой.