Кто изобрел современную физику? От маятника Галилея до квантовой гравитации
Шрифт:
где [R] описывает геометрию пространства-времени, [T] описывает распределение массы-энергии, G — гравитационная постоянная, c — скорость света. Так что теория прямо показывает фундаментальное значение двух констант природы, вошедших в физику и измеренных задолго до того, как выяснилась их подлинная роль в устройстве мироздания.
В эйнштейновской теории гравитации движение масс объясняется не силами, а геометрией искривленного пространства и времени, точнее — пространства-времени, потому что их уже накрепко связала постоянная c.
Чтобы узнать меру искривления пространства-времени, надо плотность вещества умножить на коэффициент G/c2, чрезвычайно малый из-за малости G и огромности c. Потому-то кривизну пространства-времени так долго не замечали. Гораздо дольше, чем кривизну земной поверхности.
Учитывая роль постоянных с и G в эйнштейновской теории гравитации, ее можно назвать cG– теорией или cG– теорией пространства-времени. Сам Эйнштейн называл ее Общей теорией относительности, имея на то веские личные причины. При создании теории он использовал, наряду с принципом эквивалентности, «общий принцип относительности» — отказ видеть в координатах метрические величины и возможность рассматривать произвольно искривленное пространство-время. Когда же теория была построена, оба вспомогательных принципа растворились в ней, потеряв самостоятельность. Можно сказать, что то были строительные леса, которые после окончания строительства можно убрать. В теории гравитации Эйнштейна нет никакой более общей относительности, чем в теории относительности. Впрочем, название теории не так важно, как ее содержание, а представление о содержании теории во время ее строительства и после окончания могут сильно отличаться.
В те годы, когда Эйнштейн искал теорию гравитации для описания астрономических явлений, он занимался и совсем другой физикой — физикой атомов и квантов света. Иногда у него возникала надежда, что новая теория гравитации заодно решит и проблемы физики микромира. Однако, завершив труд, Эйнштейн понял, что это не так, и трезво зафиксировал, что его теория гравитации «не может сказать о сущности других явлений природы ничего, что не было бы известно из теории относительности. Мое мнение, высказанное недавно по этому поводу, было ошибочным».
Как вам нравится такой триумфатор?
Как приходит мирская слава
В конце двадцатого века проводились разные опросы, подводящие итоги столетия, тысячелетия и всей человеческой истории. Эйнштейн оказался одним из самых знаменитых людей в мире. Согласно опросу, проведенному журналом «PhysicsWorld» среди сотни виднейших физиков, Эйнштейн и Ньютон заняли первое и второе место, при этом Эйнштейн впереди примерно на 20 %. Если же «прогуглить» интернет именами Albert Einstein и Isaac Newton, то окажется, что в глазах широкой публики Эйнштейн популярнее Ньютона аж в 4 раза!
Почему мирская слава Эйнштейна столь непропорционально велика? Неужели публику современные проблемы квантов и гравитации волнуют настолько больше, чем физиков? Ведь, с практической точки зрения, открытия Максвелла имеют гораздо большее значение. С той же точки зрения, Эйнштейн, можно сказать, всего лишь поправил Максвелла и уточнил Ньютона. К тому же опираясь на открытия Галилея — на принцип относительности и принцип эквивалентности. Так откуда же пришла к Эйнштейну такая непомерная всемирная слава? Главное — не откуда, а когда.
Две разные славы возникли в разное время и по разным причинам.
К 1913 году заслуги Эйнштейна перед физикой были уже столь велики, что к нему в Цюрих из Берлина приехал Планк — с предложением королевским и даже императорским. За год до того возглавивший физико-математическое отделение Прусской Академии наук, Планк предложил Эйнштейну принять выдвижение в члены Академии, профессорскую должность в Берлинском университете без обязанностей преподавать и руководство создаваемым Институтом физики. Германский император и король Пруссии Вильгельм II одобрил это предложение, и 2 июля 1914 года состоялся торжественный прием Эйнштейна в Академию, на котором — по традиции — он произнес речь. Речь он начал с благодарности за то, что это избрание освободило от «забот службы и позволило полностью посвятить себя занятиям наукой», а говорил о соотношении теории и эксперимента:
Перед теоретиком стоят две разные задачи: отыскать общие принципы, из которых можно вывести проверяемые следствия, и получить сами эти следствия. Для второй задачи теоретика готовят в университете. Совершенно иного рода первая. Не существует метода, который можно выучить, чтобы его успешно применять. Исходные принципы теоретик должен выведать у природы, разглядев общие черты множества опытных фактов. Пока же такие принципы не найдены, отдельные факты бесполезны. В подобном положении находится квантовая теория с тех пор, как Планк показал, что соответствующий опытам закон теплового излучения можно рассчитать с помощью квантовой гипотезы, несовместимой с классической механикой Галилея — Ньютона. Гипотеза эта за прошедшее с тех пор время блестяще подтверждена. Но, несмотря на усилия теоретиков, до сих пор не удалось заменить принципы механики на такие, из которых следовал бы планковский закон теплового излучения. Мы находимся в том же положении, что и астрономы до Ньютона. Но есть и случай, когда четко сформулированные принципы ведут к следствиям, не доступным пока исследованию. Это — теория гравитации. Понадобятся, быть может, многолетние опыты, чтобы проверить обоснованность положенных в ее основу принципов.
Эйнштейн говорит о только что опубликованном «Проекте теории гравитации».
В ответной речи Планк, воздав должное новоизбранному академику, не скрыл своего скептического отношения к этому его проекту. Планк защищал теорию относительности от ее автора и при этом упомянул об экспедиции для наблюдений предстоящего солнечного затмения, которые должны были проверить предсказанное Эйнштейном искривление лучей света под действием гравитации. Закончил Планк тем, что в физике «острейшие противоречия разрешаются при полном уважении и сердечном отношении друг к другу».
Иначе обстояли дела в мировой политике, противоречия которой вторглись в ход истории науки и в историю мировой славы Эйнштейна. Солнечное затмение предстояло наблюдать в России 21 августа 1914 года, и германская астрономическая экспедиция уже была там, готовясь к наблюдениям, когда 1 августа началась мировая война. Руководителя германской экспедиции, астронома Фрейндлиха, интернировали, оборудование конфисковали.
А начнись война на месяц позже, и нынешней непомерной славы Эйнштейна, скорее всего, не было бы.
Дело в том, что в 1914 году проверялось бы предсказание Эйнштейна, сделанное на основе лишь принципа эквивалентности. Соответствующее отклонение луча света было в два раза меньше истинного, полученного Эйнштейном из завершенной теории гравитации в конце 1915 года. Стало быть, измерения германских астрономов в 1914 году опровергли бы предсказание германского физика, а исправление предсказания в 1915 году в глазах неспециалистов-журналистов выглядело бы вынужденным. И уж во всяком случае никакого триумфа для Эйнштейна.