Чтение онлайн

на главную

Жанры

Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем
Шрифт:

Машинное обучение – одна из областей искусственного интеллекта. МО использует алгоритмы для анализа данных и получения выводов.

Глубокое обучение – лишь один из методов машинного обучения, в рамках которого компьютер учится без учителя сама с помощью данных.

Проблемы искусственного интеллекта

Искусственный интеллект сейчас находится в основном на уровне слабого интеллекта. Например, нет возможности уверенно и точно распознавать ограниченные образы.

Рис. 1.4.

Проблема распознавания образов в ИИ

Будущее ИИ

1. ИИ станет умнее человека.

2. ИИ может диагностировать и чинить себя.

3. Питомцы с ИИ

5. О запрете использования ИИ в военных целях

6. Наутилус – электронный Нострадамус

7. Компьютеры, обучающие сами себя

8. Индустрии будущего на основе ИИ

Карта памяти Основные понятия искусственного интеллекта

Рис. 1.5. Карта памяти темы Основные понятия Искусственного интеллекта

1.2. Принципы построения систем с искусственным интеллектом

Рис. 1.6. Принципы построения систем управления с искусственным интеллектом

Принципы построения самообучающихся систем на основе нейронных сетей

Общие понятия о самообучающихся системах

Самообучающаяся система – это интеллектуальная информационная система, которая на основе примеров реальной практики автоматически формирует единицы знаний.

Примеры реальных ситуаций за некоторый период времени и составляют обучающую выборку. В результате обучения автоматически строятся обобщенные функции или правила. Они определяют принадлежность ситуаций классам, которыми в дальнейшем будет пользоваться система. База знаний из обобщающих правил формируется автоматически. После этого по мере накопления она периодически корректируется.

Виды самообучающихся систем

Различают следующие виды самообучающихся систем:

Индуктивные системы – это самообучающиеся интеллектуальные информационные системы, которые работают на принципе индукции. Они осуществляют классификацию примеров по значимым признакам.

Системы, основанные на прецедентах – это самообучающиеся интеллектуальные информационные системы, которые в качестве единиц знаний хранят прецеденты решений (примеры). По запросу они позволяют подбирать и адаптировать наиболее похожие прецеденты. В таких системах база знаний содержит описания не обобщенных ситуаций, а сами ситуации или прецеденты. Поиск решения проблемы сводится к поиску по аналогии.

Информационные хранилища – это самообучающиеся интеллектуальные информационные системы, которые позволяют извлекать знания из баз данных и создавать специально-организованные базы знаний.

Нейронные сети – это самообучающиеся интеллектуальные информационные системы, которые на основе обучения по реальным примерам, строят ассоциативную сеть понятий (нейронов) для параллельного поиска на ней решений.

Понятие о нейронной сети

Нейронная сеть – параллельная распределенная структура обработки информации, которая состоит из обрабатывающих информацию элементов (нейронов), соединенных между собой сигнальными каналами (связями).

Каждый нейрон имеет одну выходную связь, которая может разветвляться и соединять его с другими элементами сети. Выходной сигнал элемента может быть любой математической формы.

Рис. 1. 7. Модель нейронной сети

Структура нейросети

Внешне структура нейронной сети напоминает структуру биологической нейронной сети. Часть терминологии в данной области появилась из нейронауки, которая исследует мозг и память.

Мозг состоит из нейронов, которые являются малыми единицами обработки информации. Природный нейрон состоит из тела клетки с ядром и протоплазмой, одного или нескольких дендритов, проводящих импульсы к нейрону, и аксона, выводящего импульс из нейрона.

Рис. 1.8. Биологический нейрон

Между окончанием аксона и началом дендритов других нейронов находится пространство – синапс. Через него импульсы с аксона передаются на дендрит другого нейрона. Такую связь называют синаптической: Синапс – точка соединения, где дендриты принимают сигналы. Уникальными способностями нейрона считается прием, обработка и передача по нейронной сети электрохимических сигналов.

Импульсы через синапс способны проходить только в одном направлении. При получении импульса нейрон начинает оценивать его силу. Одни импульсы игнорируются, другие пытаются возбудить нейрон, некоторые препятствуют этому. Эффект действия всех полученных импульсов суммируется. Если суммарный эффект превышает некоторый порог, то нейрон возбуждается, выдавая импульс на выход, т.е. посылает по аксону сигнал другим нейронам.

Рис. 1.9. Синапс в нейроне

Для успешного моделирования процесса искусственный нейрон должен действовать точно так же как и биологический.

Рис. 1.10. Искусственный нейрон

В сетях нейроны группируются слоями. Входной слой состоит из нейронов, которые получают сигналы из внешней среды. Выходной слой состоит из нейронов, которые связывают выход системы с пользователем или внешней средой.

Обработка знаний в нейронной сети состоит из взаимодействия между слоями нейронов. Проектирование связей между нейронами подобно программированию системы для обработки входа и создания желаемого выхода.

Поделиться:
Популярные книги

Энфис 6

Кронос Александр
6. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 6

Инкарнатор

Прокофьев Роман Юрьевич
1. Стеллар
Фантастика:
боевая фантастика
рпг
7.30
рейтинг книги
Инкарнатор

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Измена. Я отомщу тебе, предатель

Вин Аманда
1. Измены
Любовные романы:
современные любовные романы
5.75
рейтинг книги
Измена. Я отомщу тебе, предатель

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Ведьма

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.54
рейтинг книги
Ведьма

Рядовой. Назад в СССР. Книга 1

Гаусс Максим
1. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Рядовой. Назад в СССР. Книга 1

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Столичный доктор

Вязовский Алексей
1. Столичный доктор
Фантастика:
попаданцы
альтернативная история
8.00
рейтинг книги
Столичный доктор

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

Неудержимый. Книга X

Боярский Андрей
10. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга X

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Подчинись мне

Сова Анастасия
1. Абрамовы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Подчинись мне