Курс «Применение трубопроводной арматуры». Модуль «Применение поворотной арматуры в энергетике»
Шрифт:
К факторам, нарушающим требования документации при монтаже и эксплуатации, относятся следующие:
– перед установкой арматуры в систему не проводятся приемочные испытания, регламентируемые технической документацией;
– не контролируется гарантийный срок службы, что приводит к эксплуатации некондиционной арматуры, вероятность аварийного выхода из строя которой особенно велика;
– нарушается регламент освидетельствования и ремонта арматуры, ведение паспорта
– применяются «крючки» – рычаги-удлинители при закрывании арматуры вместо применения динамометрических ключей;
– при эксплуатации экстремальные условия возникают при незапланированных остановах и пусках технологических
– запорная арматура может использоваться при регулировании и дросселировании, что приводит к выходу ее из строя.
Недостатки в методологическом подходе к оценке надежности. К ним относятся: Применение только статистических моделей, на основе информации «работоспособность – отказ» и только формального модельного подхода к распределению вероятностей отказа, тогда как на самом деле необходимо полноценно использовать данные эксплуатации.
Для расчетов надежности только арматуры по критерию постепенного или внезапного отказа применяется методика анализа и критерий непревышения критических значений «нагрузка – прочность», для анализа метрологической надежности – критерий «параметр-поле допуска».
Силовые воздействия, формирующие поля напряжений, например, в корпусных деталях вызываются, как правило, гидростатическим давлением рабочей среды, усилием уплотнения в затворе от привода, изгибающим моментом в местах соединения трубопроводов (монтажные погрешности, деформации трубопроводов в режиме эксплуатации). Возможные последствия силовых воздействий – это недопустимые деформации и разрушение деталей арматуры, разгерметизация в затворе и относительно окружающей среды.
Из всех элементов арматуры наиболее катастрофические аварии случаются при разрушении корпусов арматуры. Однако, доля таких разрушений достаточно мала, связаны они, в основном с гидравлическими ударами, технологическими скрытыми дефектами и составляют 3-5% всех видов отказов.
Наибольшее число отказов вызвано поверхностными процессами – изнашиванием, коррозией, эрозией, кавитацией и их совместным действием. Например, анализ отказов различных видов арматуры (более 150.000 случаев, данные ЦКБА) показал, что их основной причиной явились различные виды изнашивания – 65%, коррозии – 25%, эрозии и кавитации – 5%.
Особенно потенциально опасны агрессивные и коррозионно-активные среды. Кроме коррозионного поражения эти среды в условиях действия полей напряжений приводят к усилению механохимических реакций – резкому возрастанию скорости растворения деформированных участков поверхности, коррозионному растрескиванию, значительной интенсификации изнашивания, эрозии и кавитации.
Термическое воздействие среды приводит к заклиниванию деталей в сопряжениях вследствие различного коэффициента термического расширения, возрастанию коррозионной активности рабочей среды, возникновению в деталях дополнительных полей термонапряжений, изменению механических свойств материала и др.
СВЯЗЬ НАДЕЖНОСТИ КЛАПАНОВ С НАДЕЖНОСТЬЮ УЗЛОВ ОБОРУДОВАНИЯ
Важность учета специфики надежности клапанов, как с непрерывностью процесса, необходимостью точного регулирования, так и с огромным количеством установленных клапанов, очевидна. Их количество на одном крупном энергоблоке может доходить до 40.000 ед. При этом на долю отказов установки в целом по причине выхода из строя клапанов может приходиться до 60-70%.
Среди общих простоев до 15% приходится на долю клапанов и арматуры. В структуре ремонтного цикла на долю арматуры приходится также значительная часть. Каждое ТО связано так же, как минимум, с осмотром арматуры и ведением ее паспорта. Сам отказ клапанов может приводить как к полному отказу установки, так и к постепенной потере эффективности. По классификации отказов клапаны попадают во все категории, см. табл. 2.7.
Табл. 2.7. Категории отказов клапанов
Уже достаточно давно установлено, что максимальные простои приходятся на первые годы эксплуатации. И далее, приближаясь к 8 годам эксплуатации, когда большая часть узлов исчерпывает свой ресурс, эксплуатационные затраты растут, а эксплуатационная эффективность падает. Заметное снижение уровня надежности в целом начинается через 4-5 лет после выхода на нормальный режим эксплуатации. Эти данные могут использоваться для повышения и расчета надежности клапанов, в частности, для того чтобы кратность их замены приходилась на этапы замены и других изношенных узлов. При этом уровень капитального ремонта всей установки может быть повышен. Таким образом, формируя ремонтный цикл арматуры до уровня 4-5 лет после выхода на нормальный режим установки в целом, можно добиться повышения надежности и эффективности, как капитального ремонта, так и эксплуатационной эффективности установки в целом.
Из процессов, действующих на клапаны и арматуру в составе энергоустановки, можно выделить 3 основных:
– обратимые – временно изменяющие параметры и поддающиеся регулированию, например, процессы регулирования,
– необратимые – износ штока, седла клапана, "разлохмачивание" сальникового уплотнения и др.,
– медленно развивающиеся процессы – зарастание масляной шубой пневмопровода, карамелизация клапана, прикипание, забивание слизью, уплотнение сгустков и др.,
– монотонные процессы средней скорости – линейное расширение клапанов пароконденсатной группы при температурах эксплуатации.
– быстроизменяющиеся процессы – работа клапана в условиях высокой вибрации трубопровода, наличие кавитации.
Учитывая, что в большей степени в настоящее время применяют поузловое обслуживание и ремонт, то обслуживание клапанов также должно сочетаться с кратностью обслуживания этих узлов. Надежность клапанов и арматуры должна быть больше нормируемых показателей надежности для этих узлов.
Общая эксплуатационная надежность одного и того же клапана или его элемента может отличаться в десятки раз. Так, по данным, приведенным в исследованиях по надежности в ряде отраслей, показаны следующие цифры, см. табл. 2.8. Из этих же данных можно увидеть и место вероятности отказа клапана среди других элементов контуров регулирования и сопряженных узлов.
Табл. 2.8. Вероятность отказа клапанов и элементов контуров регулирования
Внезапные и постепенные отказы
В зависимости от характера изменения параметров отказы делятся на внезапные и постепенные. Внезапные отказы возникают в результате скачкообразного изменения значений одного или нескольких основных параметров. Постепенные отказы возникают в результате постепенного изменения значений одного или нескольких параметров вследствие старения, например, прокладки, мембраны или износа, например, затвора или штока и т.п. В интеллектуальных клапанах, в которых применяются цифровые регуляторы, встречаются т.н. сбои.