Курс «Регулирующая арматура в системах автоматизации»
Шрифт:
Идеальным клапаном можно было бы назвать клапан, которого «нет», но его функция выполняется. Идеальное регулирование в соответствии с теорией – это регулирование, обеспечивающее максимальную линейность и пропорциональность расходной характеристики. Чтобы обеспечить максимально возможную линейность характеристики, сам клапан должен иметь максимально возможную равнопроцентную пропускную характеристику при минимальных затратах на выполнение сигнала.
Примером постоянного приближения к максимально возможной линейности регулирования и в клапане – к максимально возможной равнопроцентной характеристике – может быть замена шарового клапана на сегментный в ряде контуров. Улучшение расходной характеристики стало одним из главных «козырей» такого перехода, особенно по краям диапазона регулирования, где сегментный клапан, благодаря специальной
Рассмотрим, как клапаны влияют на формирование возмущений в процессе. В качестве примера можно привести данные изучения снижения вариативности процесса на узле подачи питательной воды в котел, см. вставку.
Регулирующий клапан влияет на снижение уровня переходных процессов и на совершенство регулирования посредством устранения возмущений и приближения насколько возможно к командному сигналу, рис. 4.
Рис. 4. Переходной процесс при регулировании
При изменении заданного сигнала «i» c запаздыванием «t» начинается переходной процесс, превышая заданный сигнал на величину «Н», при этом общее значение отклонения от первоначального сигнала будет отличаться на величину «Н1». Отклонение Н\Н1 определит величину перерегулирования.
Совершенный клапан должен иметь характеристики, позволяющие наиболее точно выполнить заданный сигнал, как можно больше снижая переходные процессы. Совершенство регулирующего клапана в процессе регулирования определяется по специализированным методикам, см. ниже:
Оценка клапанов на предмет совершенства регулирования по этим методикам позволяет связать их с аналогичными характеристиками, принятыми для звеньев контуров регулирования, табл.4.
Табл.4. Основные соответствия между совершенством работы звена контура регулирования и характеристиками регулирующего клапана
Как видно, работоспособность и качество контура регулирования как части системы САР (системы автоматического регулирования АСУ ТП) во многом коррелируют с характеристиками качества регулирующих клапанов, обеспечивающих эти требования. Фактически их можно отнести к сквозным параметрам, связывающим точность контура с точностью клапана.
Динамика клапана, а именно изменение скорости движения его затвора в зависимости от поворотного момента, в связи, как со средой, так и особенностями привода оказывает максимальное влияние на эксплуатационные характеристики. К ним относятся запаздывание, точность позиционирования, стабильность хода и стабильность достижения положения, высокое разрешение при движении, быстродействие, отсутствие люфтов, оптимальные постоянные времени, сила внутреннего трения в клапане и прерывистость движения затвора. Собственные характеристики клапана, такие как гистерезис, мертвая зона, определяют множество характеристик клапана для стационарных процессов. Залипания, связанные с особенностями трения между затвором и уплотняющей поверхностью, а также суммой трений между штоком и сальником, дополнительно повышают трение. Значительно влияют и особенности движения поршня в поршневых приводах. Все приведенные проблемы влияют на точность расхода и на потери
Пример. Имеется клапан мертвой зоной 0,5%. (Специалисты по управлению назвали бы эту характеристику – «зоной нечувствительности»). При его кривой усиления G=1, (аналогичный параметр из теории систем регулирования – кривая усиления исполнительного устройства) погрешность расхода также составит 0,5%. Если клапан выбран неверно и его кривая усиления составляет G=3, то погрешность регулирующего клапана составит 1,5 %, т. е. в 3 раза больше. Добавляя сюда показатели качества самого клапана, такие как обратное противодавление, а при неправильном выборе клапана, высокий фактор нагрузки, трение и залипание, получим дополнительную составляющую погрешности расхода. В целом это приводит к низкому качеству регулирования в соответствии с формулой:
Где
Q –потери расхода;
G –потери из-за неправильного коэффициента усиления;
h – дополнительные потери, связанные с качеством клапана.
Суммирование влияния клапана на точность регулирования позволяет создать определенные критерии выбора клапана для различных контуров регулирования и процессов. Правильный выбор клапана в зависимости от условий протекания технологического процесса, позволяет создать оптимальные условия для регулирования.
В настоящее время подбор клапана по «метрологическим» характеристикам, т. е. характеристикам, отвечающим за качество регулирования, и максимально соответствующим требованиям процесса, получает все большее признание. Например, чтобы обеспечить точность регулирования, медленно протекающие процессы требуют, чтобы клапан имел как можно меньшую мертвую зону, но высокую точность позиционирования, тогда как быстро протекающие процессы, например, с частым изменением параметров процесса требуют клапанов с малым гистерезисом и высоким быстродействием. При быстрых процессах низкое время отклика является наиболее критичным для характеристики времени запаздывания и инерционности. Учитывая эти факторы, удается повысить точность регулирования.
Развитие клапанов в направлении точности регулирования позволило найти эффективные решения для критически важных контуров. На ТЭС ими могут быть признаны контуры, где отношение параметров на входе и на выходе превышает критическую величину для этого контура и приводит к недопустимым погрешностям. В частности, ими могут быть: контуры питательной воды, регулирования подачи воды в пароперегреватель, клапаны пароконденсатного тракта, РОУ и др.
С ростом возможностей клапана и теоретического осмысления процесса регулирования появились программы расчета процесса регулирования и регулирующих клапанов. Их «статичность», т. е. пользование параметрами, выбранными при проектировании клапана, устраняется большей адаптивностью расчета в применении к изменяющемуся технологическому процессу. К примеру, в перспективе программы расчета типа Nelprof будут встроены в «голову» клапана для большей адаптации к изменениям в процессе клапана и контура в целом. (Источник: Статья Горобченко С. Л., Сурикова В.Н., Тотухова Ю.А. «О необходимости технологической поверки клапанов», (журнал ТПА №6, 2010).
Таким образом, клапаны прошли большой путь в составе контуров регулирования, достигнув уровня, когда они способны брать на себя задачи, ранее выполнявшиеся системой автоматизации. Ведущей тенденцией развития клапанов в составе контуров регулирования можно считать вклад в повышение идеальности регулирования и точности контура в целом.
На основе проведенного выше анализа становится ясно, что основными критериями выбора клапанов для работы в системах автоматизации может быть соответствие клапана равнопроцентной расходной характеристике, как обеспечивающей максимальную линейность установленной характеристики в трубопроводе. Вторым важным критерием является уровень возмущений, которые привносит клапан в процесс и насколько увеличиваются при этом отклонения заданного командного сигнала с его выполнением. Ниже приводятся основные преимущества поворотной арматуры (шаровых, сегментных, эксцентриковых кранов и поворотных заслонок) по сравнению с арматурой возвратно-поступательного действия (далее линейные клапаны).