Чтение онлайн

на главную

Жанры

Квант. Эйнштейн, Бор и великий спор о природе реальности
Шрифт:

Частота . Число полных циклов, совершаемых при вибрации или колебании системы за секунду. Частота волны — число полных длин волн, проходящих через фиксированную точку за одну секунду. Единица измерения частоты — герц (Hz, Гц). При частоте 1 герц за одну секунду совершается один цикл колебаний или через данную точку проходит одна длина волны.

Щелочные металлы. Входящие в первую группу периодической таблицы элементы, такие как литий, натрий и калий, обладающие сходными химическими свойствами.

Электромагнетизм. До второй половины XIX столетия считалось, что электричество и магнетизм — два разных явления, каждое из которых описывается своей системой уравнений.

Эксперименты Майкла Фарадея позволили Джеймсу Клерку Максвеллу построить теорию, объединившую электричество и магнетизм в электромагнетизм, и описать поведение электрического и магнитного полей системой из четырех уравнений.

Электромагнитные волны. Генерируются колеблющимися электрическими зарядами. Различаются длиной волны (или, что то же самое, частотой). В пустом пространстве все электромагнитные волны распространяются с одинаковой скоростью, равной скорости света (приблизительно триста тысяч километров в секунду). Это является экспериментальным подтверждением того, что свет — электромагнитная волна.

Электромагнитное излучение. Электромагнитные волны, переносящие разное количество энергии, называются электромагнитным излучением. Низкочастотные волны, такие как радиоволны, испускают меньше электромагнитного излучения, чем высокочастотные волны, такие как гамма-лучи. Электромагнитные волны и электромагнитное излучение — взаимозаменяемые понятия. См. электромагнитные волны и излучение.

Электромагнитный спектр. Весь диапазон электромагнитных волн: радиоволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи и гамма-лучи.

Электрон. Отрицательно заряженная элементарная частица, которая, в отличие от протона и нейтрона, не состоит из других элементарных составляющих.

Электронвольт (эВ). Единица энергии, которая используется в атомной и ядерной физике, в физике элементарных частиц. Один электронвольт — порядка одной десятой миллиард миллиардной джоуля (1,6 х 10– 19 Дж).

Энергетические уровни. Набор дискретных разрешенных внутренних энергетических состояний атома, соответствующий его различным квантовым энергетическим состояниям.

Энергия. Физическая величина, которая может существовать в разных формах: кинетическая энергия, потенциальная энергия, химическая энергия, тепловая энергия и энергия излучения.

Энтропия. В XIX веке Рудольф Клаузиус определил изменение энтропии как количество тепла, получаемого или отдаваемого телом или системой, поделенное на температуру, при которой происходит передача тепла. Энтропия — мера беспорядка в системе: чем больше энтропия, тем больше беспорядок. В природе не могут происходить физические процессы, приводящие к понижению энтропии.

Эфир. Гипотетическая невидимая среда. Считалось, что эфир заполняет все пространство и является той средой, в которой распространяется свет и все другие электромагнитные волны.

Эффект Зеемана. Расщепление спектральных линий атома, помещенного в магнитное поле.

Эффект Штарка. Расщепление спектральных линий атома, помещенного в электрическое поле.

Ядро. Положительно заряженная масса в центре атома. Первоначально предполагалось, что ядро состоит только из протонов, но затем стало ясно, что в состав ядер входят и нейтроны.

В ядре сосредоточена практически вся масса атома, но занимает оно только крошечную часть его объема. Ядра были открыты в 1911 году Эрнестом Резерфордом и его сотрудниками из Манчестерского университета.

Примечания

Пролог. Встреча великих

1Pais (1982), p. 443. Русский перевод: Пайс А. Научная деятельность и жизнь Альберта Эйнштейна. М.: Наука, 1989.

2Mehra (1975), p. xvii.

3 Там же.

4 Не считая трех профессоров (де Дондера, Анрио и Пикара) из Свободного университета, приглашенных в качестве гостей, Герцена — представителя семьи Сольве и научного секретаря Вершафельта, семнадцать из двадцати четырех участников конгресса были лауреатами Нобелевской премии либо позднее ее получили: Лоренц, 1902; Кюри, 1903 (физика) и 1911 (химия); У.Л. Брэгг, 1915; Планк, 1918; Эйнштейн, 1921; Бор, 1922; Комптон, 1927; Вильсон, 1927; Ричардсон, 1928; де Бройль, 1929; Ленгмюр, 1932 (химия); Гейзенберг, 1932; Дирак, 1933; Шредингер, 1933; Паули, 1945; Дебай, 1936 (химия) и Борн, 1954. Семеро, не получившие Нобелевскую премию, — Эренфест, Фаулер, Бриллюэн, Кнудсен, Крамерс, Пои и Ланжевен.

5Fine (1986), p. 1. Письмо Эйнштейна Д. Липкину от 5 июля 1952 года.

6Snow (1969), p. 94.

7Folsing (1997), p. 457.

8Pais (1994). p 31.

9 Там же.

10Jungk (1960), p. 20.

11Gell-Mann (1981), p. 169.

12Hiebert (1990), p. 245.

13Mahon (2003), p. 149.

14 Там же.

Глава 1. Революционер поневоле

1Planck (1949), pp. 33-34

2Hermann (1971), p. 23. Письмо Планка Роберту Вильямсу Вуду от 7 октября 1931 года.

3Mendelssohn (1973), p. 118.

4Heilbron (2000), p. 5.

5Mendelssohn (1973), p. 118.

6Hermann (1971), p. 23. Письмо Планка Роберту Вильямсу Вуду от 7 октября 1931 года.

7Heilbron (2000), p. 3.

8 В XVII веке было известно, что солнечный луч, проходя через призму, разлагается на цвета основного спектра. Считалось, что образование цветной радуги — результат превращения, претерпеваемого светом при прохождении через призму. Ньютон не был согласен с тем, что призма каким-то образом добавляет лучу цвета. Он поставил два эксперимента. В первом луч белого цвета проходил через призму, что приводило к образованию разноцветного спектра. Затем луч одного из цветов попадал на вторую призму. Ньютон утверждал, что если появление различных цветов обязано какому-то изменению, испытываемому светом при прохождении через призму, прохождение луча через вторую призму тоже должно приводить к его изменению. Однако он обнаружил, что какого бы цвета луч ни был, при прохождении через вторую призму он не менял цвет. Во втором эксперименте Ньютону удалось смешать лучи различных цветов и получить белый свет.

Поделиться:
Популярные книги

Поступь Империи

Ланцов Михаил Алексеевич
7. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Поступь Империи

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Сиротка 4

Первухин Андрей Евгеньевич
4. Сиротка
Фантастика:
фэнтези
попаданцы
6.00
рейтинг книги
Сиротка 4

Провинциал. Книга 7

Лопарев Игорь Викторович
7. Провинциал
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Провинциал. Книга 7

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Книга пяти колец

Зайцев Константин
1. Книга пяти колец
Фантастика:
фэнтези
6.00
рейтинг книги
Книга пяти колец

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Болотник 3

Панченко Андрей Алексеевич
3. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 3

Темный Охотник 3

Розальев Андрей
3. КО: Темный охотник
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Охотник 3

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Восход. Солнцев. Книга X

Скабер Артемий
10. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга X

По осколкам твоего сердца

Джейн Анна
2. Хулиган и новенькая
Любовные романы:
современные любовные романы
5.56
рейтинг книги
По осколкам твоего сердца

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII