Квантовые миры Стивена Хокинга
Шрифт:
Рассказывая о мире плоскунов, Хокинг не забывает подчеркнуть важную особенность – такой плоский двумерный мир может иметь одну пространственную, а вторую временную координату. Тогда проколы из пространственных превратятся в пространственно-временные, соединяя точки с разными временами и служа тоннелями для путешествий в иную историческую реальность.
Несмотря на кажущуюся мистичность, многие физики уверены в осуществимости таких проектов, поскольку они основываются на принципах квантовой теории. Трудно пока еще говорить о конкретных деталях строения «подпространственного метро» будущего, но реальность его осуществления в том или ином варианте практически не вызывает сомнений.
Когда
Некоторое время после создания модели Фридмана нестационарный непрерывно расширяющийся мир казался многим ученым нереальным. Однако соответствующие решения Фридмана были не только признаны автором теории относительности, но и получили практическое подтверждение в наблюдениях знаменитого американского астронома Эдвина Хаббла.
В 20-х годах прошлого века, после внушительной серии астрономических исследований дальних галактик, он пришел к выводу, что галактические объекты удаляются от нас со скоростью, пропорциональной этой удаленности. Следовательно, чем дальше от нас галактика, тем выше скорость ее удаления. Соответствующий коэффициент пропорциональности является важнейшей космологической величиной, получившей название постоянной Хаббла.
Свое открытие Хаббл сделал на основании астрономического приложения хорошо известного физического эффекта Доплера, состоящего в увеличении длин волн в спектре излучения источника в сторону красной части спектра для удаляющихся галактик. (Хокинг всегда использовал на лекциях простые запоминающиеся аналогии и рассказывал, как в детстве, стоя на железнодорожной насыпи, поражался изменениям гудка проходящего мимо локомотива: его сигнал перерастал из свистка в басовитое гудение.) Данное явление изменения воспринимаемой частоты колебаний при движении источника или приемника волн впервые исследовал немецкий акустик Кристиан Доплер.
Наблюдение доплеровского сдвига в инфракрасную часть спектра для удаленных галактик и получило название «красного смещения», свидетельствуя о том, что все достаточно далекие звездные системы удаляются от нас со скоростями, возрастающими с расстоянием. Вопрос о физических причинах красного смещения до сих пор бурно дебатируется в астрономических и особенно околоастрономических кругах, хотя подавляющее большинство ученых склоняются во мнениях к тому, что смещение линий в спектрах далеких галактик вызвано именно расширением Вселенной.
Здесь Хокинг всегда останавливается на принципиальном вопросе, в котором часто путаются не только студенты, но и многие преподаватели. Дело в том, что широко бытует ошибочное мнение, что поскольку все далекие скопления галактик удаляются от нас, то именно Солнечная система лежит в самом центре Большого взрыва. На самом деле это своеобразная космическая иллюзия, и центр расширения у наблюдаемой части Вселенной просто отсутствует. Иначе говоря, в какую бы точку Метагалактики мы ни попали, картина расширения будет представляться, исключая мелкие детали, той же самой, что и с земной поверхности.
Вслушиваясь в такой знакомый и в то же время чужой «электронный» тембр своей речи, многие годы заменяющий ему собственную
Так, по одной забавной городской легенде, руководствуясь некими формулами Эйнштейна, выдающийся изобретатель Никола Тесла построил фантастический «генератор невидимости». Осенью 1943 года в филадельфийских доках начались эксперименты на эсминце «Элдридж», в ходе которых он то окутывался «зеленоватым коконом свернутых полей», то вообще «телепортировался в Норфолк». Все это дало обильный материал фантастам, конспирологам и уфологам, до сих пор пишущих про «тайну Филадельфийского эксперимента» и периодически обвиняющих правительство США в сокрытии важной информации от общественности.
Когда-то в погоню за неуловимыми формулами Великого объединения вслед за великим физиком пустился и аспирант Хокинг. С тех пор уже прошло без малого полстолетия, но он все еще упорно пытается понять, как же связать воедино все такие разные силы, управляющие судьбой Мироздания.
В этом месте лекции Хокингу вспоминается его друг и коллега, нобелевский лауреат Стивен Вайнберг. Как в свое время они азартно обсуждали его книгу «Первые три минуты»! Тогда у него еще был голос, шевелились пальцы…
Покачивая крупной седовласой головой, профессор Вайнберг с молодым азартом доказывал, что когда-нибудь физики обязательно построят сверхмощный ускоритель элементарных частиц. На этом потомке Большого адронного коллайдера они смогут достоверно воспроизвести условия, царившие в первые доли мгновения после рождения Вселенной в невообразимой пучине Большого взрыва. В этот великий момент истории человечества станет ясно, что же представляет собой в истинном своем виде исходное «сверхсиловое взаимодействие».
Расположив перед креслом своего коллеги громадный планшет с перекидными листами и цветными фломастерами, сэр Вайнберг, удостоенный дворянского звания за выдающиеся научные достижения (как впоследствии и сам Хокинг), быстро покрывал листы строчками формул.
– Стив, пойми, – взгляд Вайнберга мечтательно устремился в сизую муть зимнего кембриджского тумана за окном. – Когда-нибудь наши шалопаи-студенты, ну, хорошо – пусть не наши, а их потомки, в ближайшие полвека сумеют создать теорию, объединяющую все, что нам известно об этом Мире.
– Отлично! – Хокинг с трудом оторвал взгляд от россыпи формул и с грустной улыбкой взглянул на друга. – Тебе обязательно надо написать об этом статью, нет – лучше обширный обзор, который так и назови: «Единая физика к 2050 году»! Я бы и сам с радостью поучаствовал в этом проекте, да вот никак не могу закончить новую модель моих испаряющихся черных дыр. Представляешь, вроде бы получается, что эти черные дыры должны просто шипеть и брызгать информацией, как жирный ростбиф на раскаленной сковородке пространства-времени! Но я обязательно когда-нибудь тоже напишу что-то существенное об эйнштейновской единой теории поля и назову это «Теория Всего».