Кванты. Как волшебники от математики заработали миллиарды и чуть не обрушили фондовый рынок
Шрифт:
Торп еще несколько раз приезжал в Лас-Вегас и собирал дань с игорных столов. Дилеры уже были начеку и опасались профессора-картежника. Он начал переодеваться, памятуя многочисленные истории, когда удачливых игроков подстерегали в темной подворотне или затаскивали в подвал казино и жестоко избивали.
Однажды в 1964 году, когда он играл в Лас-Вегасе в баккару, ему предложили чашку кофе с сахаром и сливками. Он сделал пару глотков и вдруг странно себя почувствовал. В тот раз Торп приехал в Лас-Вегас с приятелем и его женой-медсестрой. Она посмотрела ему в глаза и увидела знакомый взгляд наркомана, привезенного на «скорой» после передозировки. Все обошлось, но эпизод напугал Торпа. Он решил, что для испытания своих стратегий стоит найти новый полигон. Торп немедленно обратил свой взор на самое
Глава 3
Обыграй рынок
Однажды в Альбукерке, в летний день 1965 года, солнечный и жаркий, как все дни в пустыне, [19] Торп уселся в шезлонг, чтобы почитать про тайный инструмент Уолл-стрит: инвестиционные варранты.
По сути, варранты — фьючерсные контракты, вроде опциона покупателя, который инвесторы могут перевести в обыкновенные акции. (Опцион покупателя, который дает инвестору право приобрести акцию в определенный день, математически идентичен варранту.) В те времена варрантами торговали редко, считая их вотчиной картежников и сомнительных контор, туманной областью внебиржевой торговли. Не самый подходящий вариант для профессора математики. Никто пока не знал, как правильно оценивать их стоимость.
19
Как и в главе про блэкджек, большинство подробностей почерпнуты из интервью с Торпом, книги «Формула успеха: стратегия выигрыша в блэкджек», а также второй книги Торпа «Обыграй рынок». Эта книга давно распродана, но Торп любезно предоставил мне электронную версию.
В этом сумраке Торп сумел разглядеть миллионы. Методы, которые он использовал для выигрыша в блэкджек, как оказалось, можно было применять для определения цены варранта.
Торп набрел на никому не известное золотое дно. Вскоре он покинул Государственный университет Нью-Мексико и уехал преподавать в Калифорнийский университет в городе Ирвайн. Ему рассказали о преподающем там нью-йоркском профессоре-финансисте ливанского происхождения Шине Кассуфе, который тоже бился над проблемой оценки варрантов.
Кассуф интересовался варрантами с начала 1960-х. Он не раскрыл тайну их оценки, но неплохо разобрался в том, как они работают. Два профессора начали встречаться по несколько раз в неделю и в результате разработали одну из первых серьезных стратегий инвестирования на основе количественных методов анализа. Они назвали ее «научной системой рынка ценных бумаг».
Система позволяла точно определять цену на конвертируемые облигации. Это гибриды облигаций, по которым полагаются выплаты обычных процентов и тех самых редко используемых варрантов, которые дают владельцу право конвертировать ценные бумаги в акции другого типа (отсюда название). Определить цену варранта непросто, поскольку она зависит от предполагаемой стоимости базовой акции в конкретный день в будущем. Система Торпа и Кассуфа помогала им предсказывать будущий курс акций и определять, какие конвертируемые облигации оценены неверно.
Большинство ответов на свои вопросы Торп обнаружил в книге, которую нашел вскоре после того, как решил переключиться с блэкджека на Уолл-стрит. Книга называлась «Случайный характер цен на фондовом рынке». [20] Это была подборка эссе, изданная в 1964 году. В большинстве статей утверждалось, что рынок подвержен так называемому случайному блужданию. Иными словами, направление движения рынка в целом и каждой отдельно взятой акции или облигации подобно подброшенной монетке: может подняться, а может упасть, вероятность 50 на 50.
20
The Random Character of Stock Market Prices / P. Cootner (ed.). Risk Books, 2000. Прим. ред.
Представление о том, что рынок меняется именно таким образом, становилось все популярнее с середины 1950-х, хотя концептуальный инструментарий был в разработке уже больше столетия — по сути
Ботаник, которого звали Роберт Броун, через линзу старинного медного микроскопа изучал особый вид пыльцы. Он наблюдал за увеличенными пыльцевыми зернами, которые постоянно двигались в сумасшедшем танце, как тысячи крошечных мячиков для пинг-понга.
Броун не мог понять, что заставляет их плясать. Изучив множество разновидностей пыльцы других растений и даже каменную пыль, он обнаружил такое же хаотическое движение. Он пришел к выводу, что это загадочное и случайное явление. (Загадка оставалась неразгаданной многие десятилетия, пока Альберт Эйнштейн в 1905 году не обнаружил, что это странное движение, к тому моменту известное как броуновское, было связано с кружением миллионов микроскопических частиц в безумном танце.)
Параллель между броуновским движением и рыночными ценами впервые была проведена в 1900 году студентом Парижского университета по имени Луи Башелье. В тот год он написал диссертацию под названием «Теория спекуляции». Он пытался создать формулу, которая отражала бы движение облигаций на Парижской бирже. Первый английский перевод диссертации, забытой вплоть до 1950-х годов, был включен в книгу о произвольности движений рынка, которую Торп читал в Нью-Мексико.
Анализ Башелье основывался на наблюдении, согласно которому движение цен на облигации в чем-то схоже с феноменом, открытым Броуном в 1827 году. Торговля облигациями на Парижской бирже осуществлялась по той же схеме, с точки зрения математики движения были такими же хаотичными, как и перемещения частиц пыльцы. Ежеминутное движение цен на облигации казалось совершенно случайным. Они менялись по воле тысяч инвесторов, пытавшихся угадать, какой будет следующая тенденция на рынке. По мнению Башелье, их усилия были тщетны. Способа узнать, каким будет следующее движение рынка, не существует.
Формула Башелье, описывающая это явление, показывала, что курс рынка подобен подброшенной монете: он упадет или вырастет с такой же вероятностью, как монета упадет орлом или решкой или пыльцевое зерно, хаотично плавающее в растительном соке, повернет направо или налево. По мнению Башелье, дело тут в следующем: настоящая цена акций «есть истинная цена: если бы рынок рассудил по-другому, он назначил бы не эту цену, а другую, выше или ниже».
Это открытие стали называть случайным блужданием. Или походкой пьяницы. Представьте себе: поздняя ночь, вы бредете домой в густом тумане — например, в Париже 1900 года. На Монмартре замечаете пьянчужку, прислонившегося к фонарному столбу. Кто знает: может, это доселе никому не известный художник празднует свой неожиданный успех? Он явно перебрал абсента и с трудом стоит на ногах, пытаясь сообразить, в какой стороне его дом. Куда идти: на восток, на запад, на север, на юг? Вдруг его начинает резко кренить в южную сторону, и следующие пять секунд он, спотыкаясь, движется в этом направлении. А потом меняет свое решение. У него есть на это полное право — он парижский художник, в конце концов. Его дом, конечно же, на западе. Пройдет еще пять секунд, и он опять передумает — нет, на юге! И так без конца.
Согласно теории Башелье, вероятность того, что пьяница сделает пять шагов на восток или запад, такая же, как вероятность того, что облигация стоимостью в 100 франков вырастет или упадет на 1 франк за указанный промежуток времени.
График результатов случайного движения известен как колоколообразная кривая: он плавно поднимается вверх до округлой вершины, затем под таким же уклоном спускается вниз. Гораздо выше вероятность того, что пьяница будет хаотично двигаться всю ночь в разных направлениях (примеры окажутся в центральной части кривой графика), чем того, что он будет все время двигаться в одном направлении или кружиться на одном месте (примеры будут на концах кривой графика, которые принято называть хвостами распределения). Если монетку подкинуть 1000 раз, куда выше вероятность того, что она приблизительно 500 раз упадет вверх орлом и 500 раз — решкой (середина графика), чем того, что выпадет 900 орлов и 100 решек (дальний конец кривой).