Лаплас
Шрифт:
Многие из уклонений в движении планет, интересовавшие Лапласа, можно обнаружить только после громадных промежутков времени. Таких же периодов, часто превышающих возраст телескопической астрономии, требовала проверка некоторых теорий Лапласа на практике. Поэтому Лаплас живо интересовался развитием практической астрономии и для своих работ заказывал специальные переводы с греческого, индусского и даже китайского языков, если находил в сочинениях древних авторов наблюдения, которые могли принести ему пользу, Несмотря на грубость и неточность, ценность этих наблюдений была велика, именно благодаря древности, – астрономия своими корнями глубоко уходит в седую древность, а ветви ее тянутся к далекому будущему…
При исследовании отклонений в движении планет от законов Кеплера Лапласу
Например, Луна движется вокруг Земли, а притяжение Солнца возмущает это движение. Сатурн движется около Солнца, но его движение нарушается притяжением других планет, главным образом, Юпитера. Лаплас интересовался как возможностью теоретически предсказать на ближайшее время положение планет, т. е. составить их эфемериды или таблицы непосредственно для практиков, так и возможностью предсказать наиболее отдаленное будущее и солнечной системы в целом и ее членов. В XVIII столетии еще не возникла идея эволюции, выдвинутая впервые самим Лапласом в результате его занятий небесной механикой. Среди многих ученых господствовало еще представление об изначальной неизменности вселенной, вытекающей из религиозных догматов. Лучшие умы того времени, например, Эйлер, убеждаясь в изменчивости природы и сталкиваясь с трудностью предсказать ее законы, становились втупик и впадали в мистицизм.
Как же мог, однако, Лаплас об'яснить непокорные движения многочисленных детей солнечной семьи, непрестанно тревожащих друг друга? Ведь проблема трех, а тем более многих тел, практически не разрешена в общем виде и до сих пор.
К счастью, в солнечной системе существует ряд особенностей, значительно упрощающих в применении к ней проблему многих тел.
Эти особенности привлекли внимание Лапласа и позволили ему впоследствии создать свою знаменитую космогоническую гипотезу.
Бездны пространства, отделяющие планеты и Солнце друг от друга, позволяют при математической трактовке движения рассматривать эти тела как материальные точки, массы которых сосредоточены в их. центрах.
Масса Солнца гораздо больше массы всех планет вместе взятых и потому взаимодействие планет лишь понемногу отклоняет их движение от движения около Солнца по законам Кеплера. Орбиты планет имеют малые эксцентриситеты и близки к кругам, поэтому не только столкновения их, но и близкие встречи в настоящее время невозможны. Плоскости движения всех планет почти совпадают с плоскостью земной эклиптики (наклонения орбит невелики).
При таких условиях проблема движения многих тел солнечной системы может быть разрешена приближенными методами. Необходимо, однако, найти эти приближенные методы и доказать, что точность, которую дает их применение, все время находится под контролем исследователя. Лаплас совместно с Лагранжем создал так называемые классические методы небесной механики, вдохновлявшие и вдохновляющие до сих пор многие поколения механиков неба.
Возмущения в движении планет были представлены в классической небесной механике формулами, содержащими бесконечные ряды очень сложных членов. Простейшим приемом бесконечного ряда членов является известная из алгебры бесконечно убывающая геометрическая прогрессия.
Нельзя думать, что метод, применяющий бесконечные ряды, – единственный и других быть не может. Это только следствие несовершенного состояния математического анализа, но хорошо уже то, что при всей громоздкости метода рядов Лаплас сумел извлечь из него поразительные результаты.
В рядах, какими пользовался Лаплас, числовая величина членов постепенно убывает, быстро или медленно. Если можно доказать, например, для убывающей геометрической прогрессии, что сумма членов ряда конечна, и если ее нельзя вычислить точно, то можно ограничиться суммированием первых, самых больших, членов ряда, пренебрегая остальными. В небесной механике каждый член ряда выражается сложной формулой, поэтому, не всегда можно строго доказать законность подобного приближения. В некоторых случаях может быть, что где-нибудь далеко от начала, в особенности при некоторых особых условиях, член такого ряда окажется настолько большим, что пренебречь им – значит
В работе, названной «О принципе всемирного тяготения и о вековых неравенствах планет, которые от него зависят» (1773), Лаплас рассматривает замеченное до него явление «беспорядка» в движении гигантских планет.
Из сравнения древнейших наблюдений с современными выяснилось, что Сатурн Двигался С явным замедлением, а Юпитер испытывал ускорение своего движения.
Лаплас погрузился в изучение вопроса, на котором потерпели поражение и Эйлер и Лагранж, – по крайней мере, их выводы были противоположны.
Представляя возмущения в движении планет бесконечными рядами членов, создатели небесной механики убедились, что члены таких рядов бывают двух видов. В одних из них время, рассматриваемое как переменная величина, входит множителем в некоторой степени, в других же это время входит под – знак так называемой «периодической функции» (встречаются, впрочем, члены и смешанного вида). Первые из этих членов называются вековыми, вторые – периодическими. Если в формуле, выражающей изменения в величине какого-нибудь элемента, характеризующего определенную орбиту, есть только периодические члены, этот элемент испытывает лишь периодические колебания, не выходя из известных пределов. Например, в этом случае наклон плоскости орбиты планет к плоскости эклиптики то увеличивается, то уменьшается, но никогда не становится очень большим. Если в формуле содержатся вековые члены, то данный элемент с течением времени будет изменяться постоянно в одном и том же направлении. Например, линия узлов планетной орбиты будет непрерывно вертеться около Солнца, все время в одну и ту же сторону!
В 1773 году Лаплас применил ряды к исследованию движения Юпитера и Сатурна, пользуясь в усовершенствованной форме методом, предложенным Лагранжем (в 1766 г.). При этом Лаплас доказал, что Эйлер и Лагранж, вычисляя свои ряды, отбросили такие члены, которых нельзя было отбрасывать, ибо их величина с течением времени становилась не меньше той, какую давали первые члены рядов. Таким образом, Лаплас получил более точные формулы, и когда он подставил в них соответствующие числа для Юпитера и Сатурна, то оказалось, что, благодаря принятию им во внимание новых членов ряда, вековые ускорения для этих планет пропали. Это доказывало, что ускорения, наблюдаемые в движении Юпитера и Сатурна, являются не вековыми, а периодическими, хотя и имеющими, повидимому, очень длинный период, измеряемый не одним столетием.
В 1784 году, через десять с лишним лет, Лаплас снова вернулся к этой нерешенной окончательно задаче. Тщательно пересмотрев свои формулы, Лаплас нашел в них такие члены, далеко стоящие от начала, которые, вопреки первоначальным ожиданиям, оказались не ничтожно малыми по своей величине, а весьма заметными. Кроме того, эти члены оказались явно периодическими. Лаплас нашел и период этих членов – он оказался равным 913 годам. Значит, если бы астрономические наблюдения продолжались уже достаточно долго, то по ним можно было бы заметить, как с течением времени ускоренное движение Юпитера сменится замедленным, а замедленное движение Сатурна сменится ускоренным.