Linux Advanced Routing & Traffic Control HOWTO
Шрифт:
Итак, мы рассмотрели очень простой пример. Он будет работать для всех процессов, выполняющихся на маршрутизаторе и для локальной сети, если настроено преобразование адресов (NAT/masquerading). В противном случае, вам будет необходим диапазон IP адресов обоих провайдеров, или выполнять маскирование для одного из провайдеров. В любом случае, вы можете задать правила выбора провайдера для каждого конкретного адреса вашей локальной сети.
4.2.2. Распределение нагрузки.
Второй вопрос заключается в балансировке нагрузки между двумя провайдерами. Это не сложно, если у вас уже настроен раздельный
Вместо выбора одного из провайдеров в качестве маршрута по-умолчанию, вы настраиваете т.н. многолучевой (multipath) маршрут. В стандартном ядре это обеспечит балансировку нагрузки между двумя провайдерами. Делается это следующим образом (повторюсь, мы основываемся на примере из раздела Раздельный доступ):
Результатом команды будет попеременный выбор маршрута по-умолчанию. Вы можете изменить параметр weight, так чтобы один из провайдеров получал большую нагрузку.
Обратите внимание, что балансировка не будет идеальной, так как она основывается на маршрутах, а маршруты кэшируются. Это означает, что маршруты к часто посещаемым сайтам не будут проходить через разных провайдеров.
Если вы действительно интересуетесь этим, вам стоит посмотреть на патчи Юлиана Анастасова (Julian Anastasov), расположеные по адресуОни могут вам помочь.
Глава 5. GRE и другие тоннели.
В ОС Linux поддерживаются 3 типа тоннелей. Это тоннелирование IP в IP, GRE тоннелирование и тоннели не-ядерного уровня (как, например, PPTP).
5.1. Несколько общих замечаний о тоннелях:
Тоннели могут использоваться для очень необычных и интересных вещей. Также они могут усугубить ситуацию, если они сконфигурированы неправильно. Не задавайте маршрут по умолчанию через тоннель, если только вы ТОЧНО не уверены в том, что делаете :-). Далее, тоннелирование увеличивает нагрузку на систему и сеть, потому что добовляются дополнительные IP-заголовки. Обычно, это 20 байт на пакет. Таким образом, если обычный размер пакета (MTU) в сети равен 1500 байтам, то при пересылке по тоннелю, пакет может содержать только 1480 байт. Это не обязательно становится проблемой, но помните о необходимости правильной настройки фрагментации пакетов, если вы соединяете большие сети. Ах да, и конечно самый быстрый способ "прорыть" тоннель — это "рыть" с обоих сторон.
5.2. Тоннелирование IP в IP.
Этот тип тоннелирования доступен в Linux уже давно. Для его работы требуются два модуля ядра: ipip.o и new_tunnel.o.
Допустим у вас есть три сети: внутренние сети A и B, и промежуточная сеть C (например, Internet). Итак, сеть A:
Адрес маршрутизатора в сети С — 172.16.17.18.
сеть B:
Адрес маршрутизатора в сети С — 172.19.20.21.
Мы полагаем, что сеть C передает пакеты от A к B и наоборот. Такой сетью может
Теперь, что нам нужно сделать?
Убедитесь, что все необходимые модули загружены:
Теперь на маршрутизаторе сети A выполните:
А на маршрутизаторе сети B:
Когда вам нужно будет "разрушить" тоннель, выполните:
Вот и все. Через тоннель IP в IP нельзя передавать широковещательные пакеты или пакеты IPv6. Вы можете только соединить 2 сети IPv4, которые в обычной ситуации не могли бы работать друг с другом. При нынешнем положении вещей, совместимость этого кода доходит до ядер версии 1.3. Насколько я знаю, тоннелирование Linux IP-в-IP не работает с другими операционными системами и маршрутизаторами. Очень простое решение, если оно вам подходит — используйте его, если вам нужно больше — используйте GRE.
5.3. GRE тоннели.
GRE это протокол тоннелирования, который был разработан фирмой Cisco. Он может немного больше чем тоннелирование IP-в-IP. Например, вы можете пересылать широковещательную передачу и IPv6 через тоннель GRE.
В ОС Linux вам будет нужен модуль ip_gre.o.
5.3.1. Тоннелирование IPV4.
Давайте сначала разберемся с тоннелированием IPv4:
Допустим у вас есть три сети: внутренние сети A и B, и промежуточная сеть C (например, Internet).
Сеть А:
Адрес маршрутизатора в сети С — 172.16.17.18. Назовем эту сеть neta (крайне оригинально)
сеть B:
Адрес маршрутизатора в сети С — 172.19.20.21. Назовем эту сеть netb
Мы полагаем, что сеть C передает пакеты от A к B и наоборот. Как и почему — это нас не интересует.
На маршрутизаторе сети A, вам необходимо сделать следующее:
Давайте немного обсудим эти команды. В первой строке мы добавляем тоннельное устройство и присваиваем ему имя netb (имея при этом ввиду место, куда мы хотим попасть). Потом мы сообщаем, что хотим использовать протокол GRE (mode gre), удаленный адрес 172.19.20.21 (второй маршрутизатор), и адрес с которого должны отправлятся данные, предназначенные для передачи по этому тоннелю — 172.16.17.18 (это позволяет вашему маршрутизатору иместь несколько IP-адресов в сети C и оставлять возможность выбора конкретного адреса для тоннеля) и, наконец, TTL-поле пакета должно равняться 255 (ttl 255).