Linux программирование в примерах
Шрифт:
Эта функция является частью необязательного расширения POSIX «Таймеры» (TMR). Два аргумента являются запрошенным временем задержки и оставшимся числом времени в случае раннего возвращения (если
Значение
В отличие от
Возвращаемое значение равно 0, если выполнение процесса было задержано в течение всего указанного времени. В противном случае оно равно -1, с
Хотя это выглядит немного странным, вполне допустимо использовать одну и ту же структуру для обоих параметров:
Вот они:
ЗАМЕЧАНИЕ. To, что некоторые системные вызовы используют микросекунды, а другие — наносекунды, в самом деле сбивает с толку. Причина этого историческая: микросекундные вызовы были разработаны на системах, аппаратные часы которых не имели более высокого разрешения, тогда как наносекундные вызовы были разработаны более недавно для систем со значительно более точными часами. C'est la vie. Почти все, что вы можете сделать, это держать под руками ваше руководство.
14.4. Расширенный поиск с помощью двоичных деревьев
В разделе 6.2 «Функции сортировки и поиска» мы представили функции для поиска и сортировки массивов. В данном разделе мы рассмотрим более продвинутые возможности.
14.4.1. Введение в двоичные деревья
Массивы являются
В области компьютерных наук были придуманы многочисленные динамические структуры данных, структуры, которые увеличивают и уменьшают свой размер по требованию и которые являются более гибкими, чем простые массивы, даже массивы, создаваемые и изменяемые динамически с помощью
Одной из таких структур является дерево двоичного поиска, которое мы для краткости будем называть просто «двоичным деревом» («binary tree»). Двоичное дерево хранит элементы в сортированном порядке, вводя их в дерево в нужном месте при их появлении. Поиск по двоичному дереву также осуществляется быстро, время поиска примерно такое же, как при двоичном поиске в массиве. В отличие от массивов, двоичные деревья не нужно каждый раз повторно сортировать с самого начала при добавлении к ним элементов.
У двоичных деревьев есть один недостаток. В случае, когда вводимые данные уже отсортированы, время поиска в двоичном дереве сводится ко времени линейного поиска. Техническая сторона этого вопроса должна иметь дело с тем, как двоичные деревья управляются внутренне, что вскоре будет описано.
Теперь не избежать некоторой формальной терминологии, относящейся к структурам данных. На рис. 14.1 показано двоичное дерево. В информатике деревья изображаются, начиная сверху и расширяясь вниз. Чем ниже спускаетесь вы по дереву, тем больше его глубина. Каждый объект внутри дерева обозначается как вершина (node). На вершине дерева находится корень дерева с глубиной 0. Внизу находятся концевые вершины различной глубины. Концевые вершины отличают по тому, что у них нет ответвляющихся поддеревьев (subtrees), тогда как у внутренних вершин есть по крайней мере одно поддерево. Вершины с поддеревьями иногда называют родительскими (parent), они содержат порожденные вершины (children).
Рис. 14.1. Двоичное дерево
Чистые двоичные деревья отличаются тем, что каждая вершина содержит не более двух порожденных вершин. (Деревья с более чем двумя вершинами полезны, но не существенны для нашего обсуждения.) Порожденные вершины называются в этом случае левой и правой соответственно.
Деревья двоичного поиска отличаются еще и тем, что значения, хранящиеся в левой порожденной вершине, всегда меньше значения в родительской вершине, а значения, хранящиеся в правой порожденной вершине, всегда больше значения в родительской вершине. Это предполагает, что внутри дерева нет повторяющихся значений. Этот факт также объясняет, почему деревья не эффективны при работе с предварительно отсортированными данными: в зависимости от порядка сортировки, каждый новый элемент данных сохраняется либо только слева, либо только справа от находящегося впереди него элемента, образуя простой линейный список.