Linux-сервер своими руками
Шрифт:
С помощью этой программы можно увеличить емкость дискет, используя нестандартные форматы (см. табл. 4.19). Однако за качество работы этих дискет я не ручаюсь. К тому же я очень не рекомендую использовать дискеты нестандартных форматов в качестве загрузочных.
Нестандартные форматы дискет Таблица 4.19
Размер дискеты | Емкость устройства | Стандартная емкость дискеты | Число дорожек | Число секторов | Емкость дискеты, байт |
---|---|---|---|---|---|
5.25" | 360 Кб | 360 Кб | 41 | 10 | 409.088 |
5.25" | 1.2
| 360 Кб | 81 | 10 | 816.640 |
5.25" | 1.2 Мб | 1.2 Мб | 81 | 18 | 1.476.096 (1.45 Мб) |
3.5" | 720 Кб | 720 Кб | 81 | 10 | 816.640 |
3.5" | 1.44 Мб | 720 Кб | 81 | 10 | 816.640 |
3.5" | 1.44 Мб | 1.44 Мб | 81 | 21 | 1.723.904 |
Пример:
Если дискета работает крайне нестабильно, попробуйте уменьшить число секторов до 20.
5
Процессы
5.1. Системные вызовы fork и ехес
Процесс в Linux (как и в UNIX) — это программа, которая выполняется в отдельном виртуальном адресном пространстве. Когда пользователь регистрируется в системе, под него автоматически создается процесс, в котором выполняется оболочка (shell), например, /bin/bash.
В Linux поддерживается классическая схема мультипрограммирования. При этом Linux поддерживает параллельное (или квазипараллельное при наличии только одного процессора) выполнение процессов пользователя. Каждый процесс выполняется в собственном виртуальном адресном пространстве, т.е. процессы защищены друг от друга и крах одного процесса никак не повлияет на другие выполняющиеся процессы и на всю систему в целом. Один процесс не может прочитать что-либо из памяти другого процесса (или записать в нее) без «разрешения» на то другого процесса. Санкционированные взаимодействия между процессами допускаются системой.
Ядро предоставляет системные вызовы для создания новых процессов и для управления порожденными процессами. Любая программа может начать выполняться, только если другой процесс ее запустит или произойдет какое-то прерывание (например, прерывание внешнего устройства).
В связи с развитием SMP (Symmetric Multiprocessor Architectures) в ядро Linux был внедрен механизм нитей или потоков управления (threads). Нитями также называют «легковесные» процессы. Другими словами, нить — это процесс, выполняемый в виртуальной памяти, которая используется вместе с другими нитями одного и того же «тяжеловесного» процесса. Такой «тяжеловесный процесс» обладает отдельной виртуальной памятью и может иметь несколько «легковесных» процессов.
Потоки (или нити) позволяют решать в рамках одной программы одновременно несколько задач.
Операционная система предоставляет программе некоторый интервал процессорного времени. Когда программа переходит в режим ожидания какого-либо события (например, сигнала) или освобождает процессор, операционная система передает управление другой программе. Распределяя время центрального процессора, операционная система распределяет его не между программами, а между потоками. Исходя из всего этого, потоки — это наборы
Когда вы вводите команду, интерпретатор производит поиск указанной программы в каталогах, которые перечислены при определении переменной окружения PATH. При этом будет выполнена первая найденная программа с указанным именем.
Если интерпретатору (shell) встречается команда, соответствующая выполняемому файлу, интерпретатор выполняет ее, начиная с точки входа (entry point). Для С-программ entry point — это функция main. Точка входа для каждой среды разработки различна. Запущенная программа тоже может создать процесс, т.е. запустить какую-то программу и ее выполнение тоже начнется с функции main. Затем с помощью системного вызова fork создается адресное пространство — подготавливается «место» для нового процесса, а потом с помощью вызова ехес в это адресное пространство загружается программа. Таким образом, каждый новый процесс выполняется в своей индивидуальной среде.
Для создания процессов используется системный вызов: fork. Вызов fork создает новое адресное пространство, которое полностью идентично адресному пространству основного процесса. Другими словами, вызов fork создает новый процесс. После выполнения этого системного вызова вы получаете два абсолютно одинаковых процесса — основной и порожденный. Функция fork возвращает 0 в порожденном процессе и PID (Process ID — идентификатор порожденного процесса) — в основном. PID — это целое число.
Теперь, когда процесс создан, можно запустить в нем программу с помощью вызова exec. Параметрами функции exec являются имя выполняемого файла и, если нужно, параметры, которые будут переданы этой программе. В адресное пространство порожденного с помощью fork процесса будет загружена новая программа и ее выполнение начнется с точки входа (адрес функции main).
В качестве примера рассмотрим следующий фрагмент программы:
Теперь рассмотрим более подробно, что же делается при выполнении вызова fork:
1. Выделяется память для описателя нового процесса в таблице процессов.
2. Назначается идентификатор процесса PID.
3. Создается логическая копия процесса, который выполняет fork — полное копирование содержимого виртуальной памяти родительского процесса, копирование составляющих ядерного статического и динамического контекстов процесса-предка.
4. Увеличиваются счетчики открытия файлов (порожденный процесс наследует все открытые файлы родительского процесса).
5. Возвращается PID в точку возврата из системного вызова в родительском процессе и 0 — в процессе-потомке.
5.1.1. Общая схема управления процессами
Каждый процесс может порождать полностью идентичный процесс с помощью fork. Родительский процесс может дожидаться окончания выполнения всех своих процессов-потомков с помощью системного вызова wait. В любой момент времени процесс может изменить содержимое своего образа памяти, используя одну из разновидностей вызова ехес. Каждый процесс реагирует на сигналы и, естественно, может установить собственную реакцию на сигналы, производимые операционной системой. Приоритет процесса может быть изменен с помощью системного вызова nice.
Сигнал — это способ информирования процесса ядром о происшествии какого-то события. Если возникает несколько однотипных событий, процессу будет подан только один сигнал. Сигнал означает, что произошло событие, но ядро не сообщает, сколько таких событий произошло.
Примеры сигналов:
1. Окончание порожденного процесса (например, из-за системного вызова exit (см. ниже)).
2. Возникновение исключительной ситуации.
3. Сигналы, поступающие от пользователя, при нажатии определенных клавиш.